Skip to main content
Log in

27Al Magic Angle Spinning Nuclear Magnetic Resonance Study of Al1−x Cr x K(SO4)2·12H2O (x = 0, 0.07, and 0.2)

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The physical properties of Al1−x Cr x K(SO4)2·12H2O (x = 0, 0.07, and 0.2) were studied as a function of temperature using magic angle spinning nuclear magnetic resonance for 27Al. On the basis of the physical properties of pure AlK(SO4)2·12H2O, the effects of partially replacing Al3+ with Cr3+ ions were examined. Molecular motion changed with the concentration of Cr3+ ions. The relaxation process near 320 K was found to undergo molecular motion as described by the Bloembergen–Purcell–Pound theory. The activation energies, phase transition temperatures, and spin–lattice relaxation times in the rotating frame T changed with the concentration of paramagnetic ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Voigt, D. Zeng, Pure Appl. Chem. 74, 1909 (2002)

    Article  Google Scholar 

  2. B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Appl. Therm. Eng. 23, 251 (2003)

    Article  Google Scholar 

  3. V.V. Tyagi, S.C. Kaushik, S.K. Tyagi, T. Akiyama, Renew. Sust. Energ. Rev. 15, 1373 (2011)

    Article  Google Scholar 

  4. J. Dai, R. Ling, K. Wang, Adv. Mater. Res. 418–420, 282 (2012)

    Google Scholar 

  5. S. Radhakrishna, B.V.R. Chowdari, A.K. Viswanath, J. Chem. Phys. 66, 2009 (1977)

    Article  ADS  Google Scholar 

  6. R. Bohmer, P. Lunkenheimer, J.K. Vij, I. Svare, J. Phys. Condens. Matter 2, 5433 (1990)

    Article  ADS  Google Scholar 

  7. J. Pysiak, A. Glinka, Thermo. Acta 44, 21 (1981)

    Article  Google Scholar 

  8. J. Pysiak, A. Glinka, Thermo. Acta 44, 29 (1981)

    Article  Google Scholar 

  9. J. Pysiak, A. Glinka, Thermo. Acta 44, 101 (1981)

    Article  Google Scholar 

  10. F. Gronvold, K.K. Meisingset, J. Chem. Thermodyn. 14, 1083 (1982)

    Article  Google Scholar 

  11. S. Haussuhl, H. Buchen, Solid State Commun. 60, 729 (1986)

    Article  ADS  Google Scholar 

  12. N. Bloembergen, Nuclear Magnetic Relaxation (Benjamin, New York, 1961)

    Google Scholar 

  13. K. Ramesh, P. Sivaprasad, Y.P. Reddy, Mater. Lett. 5, 39 (1986)

    Article  Google Scholar 

  14. E. Oldfield, H.K.C. Timken, B. Montez, R. Ramachandran, Nature 318, 163 (1985)

    Article  ADS  Google Scholar 

  15. A.R. Lim, S.Y. Jeong, J. Phys. Condens. Matter 16, 4403 (2004)

    Article  ADS  Google Scholar 

  16. C.L. Chang, S.Y. Jeong, Y.K. Paik, J. Appl. Phys. 113, 17E105 (2013)

    Article  Google Scholar 

  17. B. Cowan, Nuclear Magnetic Resonance and Relaxation (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  18. N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679 (1948)

    Article  ADS  Google Scholar 

  19. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961)

    Google Scholar 

Download references

Acknowledgments

This work was supported by an NRF grant funded by the MEST (No. 2011-0012663). Celesta L. Chang thanks the KBSI for an X-Science College-Student-Internship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younkee Paik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, C.L., Jeong, SY. & Paik, Y. 27Al Magic Angle Spinning Nuclear Magnetic Resonance Study of Al1−x Cr x K(SO4)2·12H2O (x = 0, 0.07, and 0.2). Appl Magn Reson 44, 1245–1252 (2013). https://doi.org/10.1007/s00723-013-0478-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-013-0478-2

Keywords

Navigation