Skip to main content
Log in

Performance Analysis of 2-D GRAPPA and Partial Fourier GRAPPA for 3-D MRI

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The acquisition time of three-dimensional magnetic resonance imaging (3-D MRI) is too long to tolerate in many clinical applications. At present, parallel MRI (pMRI) and partial Fourier (PF) with homodyne detection, including 2-D pMRI (two-dimensional pMRI) and PF_pMRI (the combination of PF and pMRI), are often used to accelerate data sampling in 3-D MRI. However, the performances of 2-D pMRI and PF_pMRI have been seldom discussed. In this paper, we choose GRAPPA (generalized auto-calibrating partially parallel acquisition) as a representative pMRI to analyze and compare the performances of 2-D GRAPPA and PF_GRAPPA, including the noise standard deviation (SD), root mean-square error (RMSE) and g factor, through a series of in vitro experiments. A series of phantom experiments show that the SD, RMSE and g-factor values of PF_GRAPPA are lower than those of 2-D GRAPPA under the same acceleration factor. It demonstrates that the performance of PF_GRAPPA is better than that of 2-D GRAPPA. PF_GRAPPA can be used in any thickness of imaging slab, while 2-D GRAPPA can only be used in thick slab due to the difficulties in determination of the fitting coefficients which result from imperfect RF pulse. In vivo brain experiment results also show that the performance of PF_GRAPPA is better than that of 2-D GRAPPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Kijowski, G.E. Gold, J. Magn. Reson. Imaging 33(4), 758–771 (2011)

    Article  Google Scholar 

  2. M.P. Goldman, G.R. Skover, G.S. Payonk, J. Drugs Dermatol. 8(12), 1113–1119 (2009)

    Google Scholar 

  3. H. Zhang, J.H. Maki, M.R. Prince, J. Magn. Reson. Imaging 25(1), 13–25 (2007)

    Article  MATH  Google Scholar 

  4. M. Weiger, K.P. Pruessmann, P. Boesiger, MAGMA 14(1), 10–19 (2002)

    Google Scholar 

  5. M. Blaimer, F.A. Breuer, Magn. Reson. Med. 56(6), 1359–1364 (2006)

    Article  Google Scholar 

  6. H.H. Hu, A.J. Madhuranthakam, D.G. Kruger, J.F. Glockner, S.J. Riederer, Magn. Reson. Med. 55(1), 16–22 (2006)

    Article  Google Scholar 

  7. M.A. Griswold, P.M. Jakob, R.M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase, Magn. Reson. Med. 47, 1202–1210 (2002)

    Article  Google Scholar 

  8. D.C. Noll, D.G. Nishimura, A. Macovski, IEEE Trans. Med. Imaging 10, 154–163 (1991)

    Article  Google Scholar 

  9. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, Magn. Reson. Med. 42, 952–962 (1999)

    Article  Google Scholar 

  10. F.A. Breuer, S.A.R. Kannengiesser, M. Blaimer, N. Seiberlich, P.M. Jakob, M.A. Griswold, Magn. Reson. Med. 62(3), 739–746 (2009)

    Article  Google Scholar 

  11. P.M. Robson, A.K. Grant, A.J. Madhuranthakam, R. Lattanzi, D.K. Sodickson, C.A. McKenzie, Quantification of SNR and g-factor for parallel MRI: universal application to image-based and k space-based image reconstructions, in Proceedings of 16th annual meeting of ISMRM, Toronto, Canada, 2008; p. 1295

  12. R.M. Henkelman, Med. Phys. 12, 232–233 (1985)

    Google Scholar 

  13. C.D. Constantinides, E. Atalar, E.R. McVeigh, Magn. Reson. Med. 38, 852–857 (1997)

    Article  Google Scholar 

  14. S.B. Reeder, B.J. Wintersperger, O. Dietrich, T. Lanz, A. Greiser, M.F. Reiser, G.M. Glazer, S.O. Schoenberg, Magn. Reson. Med. 54, 748–754 (2005)

    Article  Google Scholar 

  15. O. Dietrich, J.G. Raya, S.B. Reeder, M.F. Reiser, S.O. Schoenberg, J. Magn. Reson. Imaging 26, 375–385 (2007)

    Article  Google Scholar 

  16. P. Kellman, E.R. McVeigh, Magn. Reson. Med. 54, 1439–1447 (2005)

    Article  Google Scholar 

  17. Chatterji M, Mercado CL, Moy L, Magn. Reson. Imaing Clin. N. Am. 18(2):207–224 (2010)

  18. M. Moon, D. Cornfeld, J. Weinreb, Magn. Reson. Imaging Clin. N. Am. 17(2), 351–362 (2009)

    Article  Google Scholar 

  19. C.Calcagno, V. Mani, S. Ramachandran, Z.A. Fayad, Angiogensis 13(2), 87–99 (2010)

    Article  Google Scholar 

  20. J.G. Castillo, G. Silvay, Semin. Cardiothorac. Vasc. Anesth. 14(1), 6–20 (2010)

    Article  Google Scholar 

  21. U.I. Attenberger, M. Ingrisch, O. Dietrich, K. Herrmann, K. Nikolaou, M.F. Reiser, S.O. Schönberg, C. Fink, Invest. Radiol. 44(9), 525–531 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program)-2010CB732600, the National Natural Science Foundation of China-81000611, 81120108012 and the Natural Science Foundation of Shenzhen, China-JCY201110053.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxi Xie or Bensheng Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, S., Xie, G., Chung, YC. et al. Performance Analysis of 2-D GRAPPA and Partial Fourier GRAPPA for 3-D MRI. Appl Magn Reson 44, 1199–1212 (2013). https://doi.org/10.1007/s00723-013-0472-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-013-0472-8

Keywords

Navigation