Skip to main content
Log in

Computational Analysis of a Radiofrequency Knee Coil for Low-Field MRI Using FDTD

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) is essential for the diagnosis and treatment of musculoskeletal conditions. Low-field (<0.5T) imaging is a cost-effective alternative to more expensive high-field strength imaging due to the inexpensive setting, greater patient comfort and better safety profile. On the other hand, if compared with high-field body scanners, the low-field scanners produce poor-quality images with lower signal-to-noise ratio. Especially in low-field MR, receiver coil performance plays a significant role in image quality. Coil performance is generally evaluated using classical electromagnetic theory, but when the coil is loaded with a sample, an analytical solution is extremely difficult to derive, so that a trial-and-error approach is often followed. Numerical methods have been proposed in literature as good alternatives to predict MRI coil performance. In this study the performance of a knee coil for low-field (0.5 T) MR scanners is analyzed using workbench tests and numerical simulation with a software program based on the finite difference time domain method. Parameter performances measured using the classical workbench test are compared with those obtained using numerical simulations. Finally, the knee coil performance is validated with images acquired in a commercial low-field MR system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Simi, M. Ballardin, M. Casella, D. De Marchi, V. Hartwig, G. Giovannetti, N. Vanello, S. Gabbriellini, L. Landini, M. Mut. Res. 645, 39–43 (2008)

    Article  Google Scholar 

  2. V. Hartwig, G. Giovannetti, N. Vanello, M. Lombardi, L. Landini, S. Simi, Int. J. Environ. Res. Public Health 6, 1778–1798 (2009)

    Article  Google Scholar 

  3. V. Hartwig, G. Giovannetti, N. Vanello, L. Landini, M.F. Santarelli, Appl. Magn. Reson. 38, 337–348 (2010)

    Article  Google Scholar 

  4. V. Hartwig, N. Vanello, G. Giovannetti, M. Lombardi, L. Landini, M.F. Santarelli, Magn. Reson. Mater. Phy. 24, 323–330 (2011)

    Article  Google Scholar 

  5. B.K. Rutt, D.H. Lee, J. Magn. Reson. Imaging. 6, 57–62 (1996)

    Article  Google Scholar 

  6. A.D. Vellet, D.H. Lee, P.L. Munk, L. Hewett, M. Eliasziw, S. Dunlavy, L. Vidito, P.J. Fowler, A. Miniaci, A. Radiol. 197, 826–830 (1995)

    Google Scholar 

  7. P.M. Parizel, H.A. Dijkstra, G.P. Geenen, P.A. Kint, R.J. Versteylen, P.J. van Wiechen, A.M. De Schepper, Eur. J. Radiol. 19, 132–138 (1995)

    Article  Google Scholar 

  8. G. Giovannetti, V. Hartwig, L. Landini, M.F. Santarelli, Appl. Magn. Reson. 39, 391–399 (2010)

    Article  Google Scholar 

  9. G. Giovannetti, F. Frijia, V. Hartwig, V. Viti, L. Landini, Appl. Magn. Reson. 39(3), 225–231 (2010)

    Article  Google Scholar 

  10. K.S. Yee, IEEE Trans. Ant. Propag. 14, 302–307 (1966)

    ADS  MATH  Google Scholar 

  11. T.S. Ibrahim, R. Lee, B.A. Baertlein, Y. Yu, P.M.L. Robitaille, Magn. Reson. Imaging. 18, 835–843 (2000)

    Article  Google Scholar 

  12. C.M. Collins, M.B. Smith, Magn. Reson. Med. 45, 692–699 (2001)

    Article  Google Scholar 

  13. J.H. Seo, H.Y. Heo, B.H. Han, S.Y. Lee. in Proceedings of the 29th Annual International Conference of the IEEE EMBS, Lyon, France, 2007, FrD03.6

  14. W. Liu, C.M. Collins, M.B. Smith, Appl. Magn. Reson. 29, 5–18 (2005)

    Article  Google Scholar 

  15. C. Guclu, G. Kashmar, A. Hacinliyan, O. Nalcioglu, Magn. Reson. Med. 37(1), 76–83 (1997)

    Article  Google Scholar 

  16. J.H. Chen, S.K. Jeng, F.H. Lin, W.P. Kuan, IEEE Trans. Magn. 35(4), 2118–2127 (1999)

    Article  ADS  Google Scholar 

  17. G. Giovannetti, V. Viti, V. Hartwig, Y. Liu, W. Yu, R. Mittra, L. Landini, A. Benassi, Int. J. Biomed. Eng. Technol. 4(1), 18–28 (2010)

    Article  Google Scholar 

  18. G. Giovannetti, V. Hartwig, L. Landini, M.F. Santarelli, Appl. Magn. Reson. 40, 351–361 (2011)

    Article  Google Scholar 

  19. G. Giovannetti, V. Viti, L. Yongjun, W. Yu, R. Mittra, L. Landini, A. Benassi, Concepts Magn. Reson. B 33B(4), 209–215 (2008)

    Article  Google Scholar 

  20. L. Darrasse, G. Kassab, Rev. Sci. Instrum. 64(7), 1841–1844 (1993)

    Article  ADS  Google Scholar 

  21. R. Hernandez, A. Rodriguez, P. Salgado, F.A. Barrios, Rev. Mex. Fis. 49(2), 107–114 (2003)

    Google Scholar 

  22. Y. Duan, T.S. Ibrahim, B.S. Peterson, F. Liu, A. Kangarlu, Int. J. Antennas Propag. 1, 1–10 (2008)

    Article  Google Scholar 

  23. American Society for Testing and Material (ASTM) Designation: F2182-02a (2004) Standard Test Method for Measurement of Radio Frequency Induced Heating Near Passive Implants During Magnetic Resonance Imaging, ASTM International, West Conshohocken, PA

  24. G. Giovannetti, V. Hartwig, V. Viti, P. Zadaricchio, L. Meini, L. Landini, A. Benassi, Concepts Magn. Reson. 33B(1), 32–38 (2008)

    Article  Google Scholar 

  25. D.I. Hoult, Concepts Magn. Reson. 12, 173–187 (2000)

    Article  Google Scholar 

  26. C. Penney, Microwave J. 50(12), 118–122 (2007)

    Google Scholar 

  27. G. Giovannetti, V. Viti, V. Positano, M.F. Santarelli, L. Landini, A. Benassi, Int. J. Biomed. Eng. Technol. 1(1), 4–17 (2007)

    Article  Google Scholar 

  28. J. Wang, A. Reykowski, J. Dickas, IEEE Trans. Biomed. Eng. 42(9), 908–917 (1995)

    Article  Google Scholar 

  29. J.M. Jin, Electromagnetic Analysis and Design in Magnetic Resonance Imaging (CRC Press, Boca Raton, 1999)

    Google Scholar 

  30. G. Giovannetti, R. Francesconi, L. Landini, M.F. Santarelli, V. Positano, V. Viti, A. Benassi, Concepts Magn. Reson. B 20B(1), 9–16 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Hartwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartwig, V., Tassano, S., Mattii, A. et al. Computational Analysis of a Radiofrequency Knee Coil for Low-Field MRI Using FDTD. Appl Magn Reson 44, 389–400 (2013). https://doi.org/10.1007/s00723-012-0388-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0388-8

Keywords

Navigation