Skip to main content
Log in

EPR Studies of Tl0.5Pb0.5Sr1.6Ba0.4CaCu2−x Ru x O7−δ Superconductor

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Bulk superconducting samples of type Tl0.5Pb0.5Sr1.6Ba0.4CaCu2−x Ru x O7−δ, (Tl, Pb)/Sr-1212, with 0.0 ≤ x ≤ 0.525 were prepared by the conventional one-step solid-state reaction technique. The prepared samples were investigated using X-ray powder diffraction, electrical resistivity and electron paramagnetic resonance (EPR) measurements. Enhancement of the phase formation, superconducting transition temperature T c and hole carriers concentration P was observed up to x = 0.075. For x > 0.075, a reverse trend was observed. EPR spectra were measured at different temperatures (120–290 K) for all prepared samples. The number of spins N participating in the resonance and the paramagnetic susceptibility χ were calculated as a function of both Ru-content and temperature. N and χ increased as the Ru-content increased. A linear relationship between logN and 1/T was established, from which the activation energy E a was calculated as a function of the Ru-content. The temperature dependence of χ was fitted according to Curie–Weiss type of magnetic behavior. Curie constant C, Curie temperature θ, the effective magnetic moment μ and the electronic specific heat γ were estimated as a function of the Ru-content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.Y. Lao, J.H. Wang, D.Z. Wang, S.X. Yang, Y. Tu, J.G. Wen, H.L. Wu, Z.F. Ren, D.T. Verebelyi, M. Paranthaman, T. Aytug, D.K. Christen, R.N. Bhattacharya, R.D. Blaugher, Supercond. Sci. Technol. 13, 173 (2000)

    Article  ADS  Google Scholar 

  2. D.H. Kim, K.E. Gray, R.T. Kampwirth, J.C. Smith, Physica C 177, 431 (1991)

    Article  ADS  Google Scholar 

  3. C. Martin, J. Provost, D. Bourgault, B. Domengès, C. Michel, M. Hervieu, B. Raveau, Physica C 157, 460 (1989)

    Article  ADS  Google Scholar 

  4. A. Maignan, C. Martin, V. Hardy, Ch. Simon, Physica C 228, 323 (1994)

    Article  ADS  Google Scholar 

  5. C. Park, S.S. Bayya, D. Sriram, R.L. Snyder, Appl. Superconductivity 3, 139 (1995)

    Article  Google Scholar 

  6. E. Kandyel, M.A. Sekkina, M.A.T. Dawoud, M.Y. Bohnam, Solid State Commun. 135, 214 (2005)

    Article  ADS  Google Scholar 

  7. A.A. Yusuf, A.K. Yahya, N.A. Khan, F.Md. Salleh, E. Marsom, N. Huda, Physica C 471, 363 (2011)

    Article  ADS  Google Scholar 

  8. Y.M. Xiong, L. Li, X.G. Luo, H.T. Zhang, C.H. Wang, S.Y. Li, X.H. Chen, J. Phys.: Condens. Matter 15, 1693 (2003)

    Article  ADS  Google Scholar 

  9. A.F. Dong, H.X. Geng, G.C. Che, W.W. Huang, S.L. Jia, Z.X. Zhao, Supercond. Sci. Technol. 19, 206 (2006)

    Article  ADS  Google Scholar 

  10. R. Awad, J. Phys. Conf. Ser. 97, 012186 (2008)

    Article  ADS  Google Scholar 

  11. M.A. Aksan, M.E. Yakinci, K. Kadowaki, J. Supercond. Nov. Magn. 23, 371 (2010)

    Article  Google Scholar 

  12. A.I. Abou-Aly, S.A. Mahmoud, R. Awad, M.ME. Barakat, J. Supercond. Nov. Magn. 23, 1575 (2010)

    Article  Google Scholar 

  13. R. Awad, A.I. Abou-Aly, S.A. Mahmoud, M.ME. Barakat, J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1187-4

  14. V.A. Ivanshin, I.N. Kurkin, E.V. Pomjakushina, Phys. Solid State 51, 32 (2009)

    Article  Google Scholar 

  15. A.I. Abou-Aly, R. Awad, S.A. Mahmoud, M.ME. Barakat, J. Alloys Compd. 509, 7381 (2011)

    Article  Google Scholar 

  16. K. Lebbou, M.Th. Cohen-Adad, R. Abraham, S. Trosset, R.E. Gladyshevskii, R. Flükiger, P. Galez, G.W. Schulz, H.W. Weber, M. Couach, Physica C 297, 201 (1998)

    Google Scholar 

  17. W.M. Woch, R. Zalecki, A. Kolodziejczyk, H. Sudra, G. Gritzner, Supercond. Sci. Technol. 21, 085002 (2008)

    Article  ADS  Google Scholar 

  18. R.S. Liu, W. Zhou, R. Janes, P.P. Edwards, Solid State Commun. 76, 1265 (1990)

    Google Scholar 

  19. A.I. Abou-Aly, I.H. Ibrahim, R. Awad, A. El-Harizy, A. Khalaf, J. Supercond. Nov. Magn. 23, 1325 (2010)

    Article  Google Scholar 

  20. J.H. Koo, G. Cho, J. Phys.: Condens. Matter 15, L729 (2003)

    Article  ADS  Google Scholar 

  21. S. Singh, D.C. Khan, Physica C 222, 233 (1994)

    Article  ADS  Google Scholar 

  22. A.K. Yahya, W.F. Abdullah, H. Imad, M.H. Jumali, Physica C 463–465, 474 (2007)

    Article  Google Scholar 

  23. A.K. Yahya, F.M. Salleh, N. Ibrahim, R. Abd-Shukor, Physica C 388–389, 371 (2003)

    Article  Google Scholar 

  24. Q. Hong, J.H. Wang, Physica C 217, 439 (1993)

    Article  ADS  Google Scholar 

  25. H. Eskes, G.A. Sawatzky, Phys. Rev. Lett. 61, 1415 (1988)

    Article  ADS  Google Scholar 

  26. D.T. Jover, H. Wilhelm, R.J. Wijngaarden, R.S. Liu, Phys. Rev. B 55, 11832 (1997)

    Article  ADS  Google Scholar 

  27. A. Abrikosov, L.P. Gor’kov, Sov. Phys. JETP 12, 1243 (1961)

    Google Scholar 

  28. M. Vélez, M.C. Cyrille, S. Kim, J.L. Vicent, K.S. Ivan, Phys. Rev. B 59, 14659 (1999)

    Article  ADS  Google Scholar 

  29. M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Flower, Physica C 176, 95 (1991)

    Article  ADS  Google Scholar 

  30. L. Bejjit, M. Haddad, Physica C 371, 339 (2002)

    Article  ADS  Google Scholar 

  31. I. Felner, U. Asaf, Y. Levi, O. Millo, Phys. Rev. B 55, 3374 (1997)

    Article  ADS  Google Scholar 

  32. J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance-Elementary Theory and Practical Applications, 2nd edn. (Wiely, Hoboken, New Jersey, 2007)

  33. M.C.M. O’Brien, Proc. R. Soc. Lond. 281, 323 (1964)

    Google Scholar 

  34. M.J. Riley, M.A. Hitchman, D. Reinen, Chem. Phys. 102, 11 (1986)

    Article  Google Scholar 

  35. S.E. Barnes, Adv. Phys. 30, 801 (1981)

    Article  ADS  Google Scholar 

  36. H. Shimizu, K. Fujiwara, K. Hatada, Physica C 282–287, 1349 (1997)

    Article  Google Scholar 

  37. A.I. Abou-Aly, N.H. Mohammed, R. Awad, I.H. Ibrahim, Supercond. Sci. Technol. 13, 1107 (2000)

    Article  ADS  Google Scholar 

  38. N.W. Aschcroft, N.D. Mermin, Solid State Physics (Harcourt College Publishers, New York, 2001)

  39. A. Junod, D. Eckert, G. Triscone, V.Y. Lee, J. Muller, Physica C 159, 215 (1989)

    Article  ADS  Google Scholar 

  40. V.P.S. Awana, L. Menon, S.K. Malik, Physica C 262, 266 (1996)

    Article  ADS  Google Scholar 

  41. S. Simon, R. Pop, V. Simon, M. Coldea, J. Non-Cryst. Solids 331, 1 (2003)

    Article  ADS  Google Scholar 

  42. Y. Ono, K. Satoh, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 46, 1071 (2007)

    Article  ADS  Google Scholar 

  43. T. Kondo, Y. Kubo, Y. Shimakawa, T. Manako, Phys. Rev. B 50, 1244 (1994)

    Article  ADS  Google Scholar 

  44. C.P. Poole, H.A. Farach, R.J. Creswick, R. Prozorov, Superconductivity, 2nd edn. (Academic Press, Amsterdam, 2007)

    Google Scholar 

  45. König’s tables, Landolt-Börnstein, New Series, vol. II/2, 16 (Springer, Berlin, 1966)

Download references

Acknowledgments

We express our gratitude to the Superconductivity and Metallic-Glass Laboratory, Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt, for aiding with the experimental procedures. Special thanks to National Research Center, Egypt, for EPR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Awad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awad, R., Abou-Aly, A.I., Mahmoud, S.A. et al. EPR Studies of Tl0.5Pb0.5Sr1.6Ba0.4CaCu2−x Ru x O7−δ Superconductor. Appl Magn Reson 41, 79–93 (2011). https://doi.org/10.1007/s00723-011-0245-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0245-1

Keywords

Navigation