Skip to main content
Log in

Calculations of 31P Magnetic Shielding Constants of Derivatives of Betaine and Phosphine Molecules Dissolved in Different Solvents by Using Supermolecular Model and Combined Methods of Quantum Chemistry and Molecular Mechanics

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Spatial structures of molecular clusters modeling a solvate shell around phosphorus-containing methyl- and butyl-derivatives of phosphine and betaine molecules dissolved in different solvents (acetone, toluene, formamide) have been calculated by using different variants of density functional theory (unrestricted Becke three-parameter Lee–Yang–Parr [UB3LYP], Perdew–Burke–Ernzerhof [PBE], optimized exchange functional [OPTX] developed by Handy and Cohen in conjunction with Lee–Yang–Parr [LYP] correlational functional [OLYP]) with 6-31G(d,p) and 6-31G++(d,p) basis sets. The 31P magnetic shielding constants for the structures are calculated with the usage of gauge-including atomic orbitals in UB3LYP/6-31G(d,p) and 6-31G++(d,p) methods. The modeling of molecular clusters is done by using the supermolecular model, the molecular mechanics method and the combination of quantum chemistry and molecular mechanics methods (QM/MM). The own N-layered integrated molecular orbital method (ONIOM) has been applied for modeling and calculating of isotropic 31P nucleus magnetic shielding of clusters of trimethylphosphine and trimethylbetaine molecules dissolved in acetone using combinations of UB3LYP/6-31G(d,p) (higher level) and unrestricted Hartree–Fock (UHF)/6-31G(d,p) (lower level) methods. Applicability of the ONIOM approach and different ways of modeling to the calculation of 31P nucleus magnetic shielding constants is studied. A comparison of the results obtained by the density functional theory, ONIOM and MM methods is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.M. Grant, R.K. Harris (eds.), Encyclopedia of Nuclear Magnetic Resonance (Wiley, New York, 1996)

  2. K. Wuthrich, NMR in Structural Biology (World Scientific, Singapore, 1995)

  3. C.L. Brooks, M. Karplus, B.M. Pettitt, Adv. Chem. Phys., vol. LXXI (Wiley, New York, 1988)

  4. N.F. Ramsey, Phys. Rev. 78, 699 (1950)

    Article  ADS  MATH  Google Scholar 

  5. M.J. Stephen, Proc. R. Soc. (Lond.) A 243, 264 (1957)

    Google Scholar 

  6. M. Karplus, H.J. Kolker, J. Chem. Phys. 38, 1263 (1963)

    Article  ADS  Google Scholar 

  7. H.J. Kolker, M. Karplus, J. Chem. Phys. 41, 1259 (1964)

    Article  ADS  Google Scholar 

  8. P.W. Langhoff, M. Karplus, R.P. Hurst, J. Chem. Phys. 44, 505 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  9. A.J. Sadley, M. Jaszunski, Mol. Phys. 22, 761 (1971)

    Google Scholar 

  10. V.B. Mushkin, R.M. Aminova, J. Mol. Struct. (Theochem.) 572, 185 (2001)

    Google Scholar 

  11. J. Oddershede, P. Jorgensen, D.L. Yager. Comput. Phys. Rep. 2, 33 (1984)

    Google Scholar 

  12. V.G. Malkin, O.L. Malkina, M.E. Casida, D.R. Salahub, J. Am. Chem. Soc. 116, 1994 (5898)

    Google Scholar 

  13. R.M. Stevens, R.M. Pitzer, W.N. Lipscomb, J. Chem. Phys. 38, 550 (1963)

    Google Scholar 

  14. W. Kutzelnigg, U. Fleischer, M. Schindler, NMR Basic Principles and Progress, vol. 23 (Springer, Berlin, 1990), p. 165

  15. R. Holler, H. Lischka, Mol. Phys. 41, 1017 (1980)

    Google Scholar 

  16. P. Lazzeretti, R, Zanasi, J. Chem. Phys. 72, 6768 (1980)

    Google Scholar 

  17. F. London, J. Phys. Radium 8, 397 (1937)

    Google Scholar 

  18. J.A. Pople, Proc. R. Soc. (Lond.) A239, 541(1957)

  19. R. Ditchfield, Mol. Phys. 27, 789 (1974)

    Google Scholar 

  20. K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990)

    Article  Google Scholar 

  21. M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Comperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople, Gaussian 94, Revision D.1 (Gaussian, Inc., Pittsburgh PA, 1995)

  22. P. Pulay, J.F. Hinton, K. Wolinski, in Nuclear Magnetic Shieldings and Molecular Structure, ed. by J.A. Tossell, (Kluwer Academic Publishers, Dordrecht, 1993), pp. 243–262

  23. F.E. Hansen, T.D. Bouman, J. Chem. Phys. 82, 5035 (1985)

    Google Scholar 

  24. R.M. Aminova, Mol. Phys. 37, 319 (1979)

    Google Scholar 

  25. R.M. Aminova, H.I. Zoroatskaya, Yu.Yu. Samitov, J. Magn. Reson. 33, 497 (1979)

    Google Scholar 

  26. R.M. Aminova, J. Mol. Struct. (Theochem.) 183, 215 (1989)

    Google Scholar 

  27. T. Helgaker, M. Jaszunski, K. Rudd, Chem. Rev. 99, 293 (1999)

    Google Scholar 

  28. V.G. Malkin, O.L. Malkina, L.A. Eriksson, D.R. Salahub, in Modern Density Functional Theory: A Tool for Chemistry, ed. by J.M. Seminario, P. Politzer (Elsevier Science, New York, 1995)

  29. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

  30. G. Vignale, M. Rasolt, Phys. Rev. B 37, 10685 (1988)

    Google Scholar 

  31. C. van Wüllen, J. Chem. Phys. 102, 2806 (1995)

    Google Scholar 

  32. Q. Cui, M. Karplus, J. Phys. Chem. B 104, 3721 (2000)

    Google Scholar 

  33. A.M. Lee, N.C. Handy, S.M. Colwell, J. Chem. Phys. 103, 10095 (1995)

    Google Scholar 

  34. Yu.G. Shtirlin, N.I. Tirishkin, G.G. Ishakova, V.V. Gavrilov, V.D. Kiselev, A.I. Konovalov, Zhurn. Obsh. Khim. 65, 1101 (1995)

    Google Scholar 

  35. T. Vreven, K. Morokuma, J. Comput. Chem. 21, 1419 (2000)

    Google Scholar 

  36. B. Wang, K.M. Merz, J. Chem. Theor. Comput. 2, 209 (2006)

  37. J. Kongsted, C.B. Nielsen, K.V. Mikkelsen, O. Christiansen, K. Ruud, J. Chem. Phys. 126, 034510–034511 (2007)

    Google Scholar 

  38. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Google Scholar 

  39. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavacari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98, revision A.6. (Gaussian, Inc., Pittsburgh, PA, 1998)

  40. A.J. Gordon, R.A. Ford, The Chemist’s Companion (A handbook of practical data, techniques, and references) (Wiley, New York, 1972)

  41. C. van Wullen, Phys. Chem. Chem. Phys. 2, 2137 (2000)

    Google Scholar 

  42. V.A. Naumov, Molecular Structures of Phosphor Organic Compounds (Nauka, Moscow, 1983), p. 122

  43. C.J. Jameson, A.C. de Dios, A.K. Jameson, J. Chem. Phys. 95, 9042 (1991)

    Google Scholar 

  44. J. Phillip Bowen, N.L. Allinger, in Reviews in Computational Chemistry II, ed. by K.B. Lipkowitz, D.B. Boyd (Willey-VCH, New York, 1991), p. 81

  45. U. Burkert, N.L. Allinger, Molecular Mechanics (American Chemical Society, Washington, 1982)

  46. N.L. Allinger, J. Am. Chem. Soc. 99, 8127 (1977)

    Google Scholar 

  47. I.G. Kaplan, Introductions to the Theory of Intermolecular Interactions (Moscow, Nauka, 1982)

  48. J. Sponer, P. Hobza, Chem. Phys. Lett. 267, 263 (1997)

    Google Scholar 

  49. S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117 (1981)

    Article  Google Scholar 

  50. R. Cammi, J. Tomasi, J. Comput. Chem. 16, 1449 (1995)

    Article  Google Scholar 

  51. J. Tomasi, M. Persico, Chem. Rev. 94, 2027 (1994)

  52. C.J. Cramer, D.G. Truhlar, Chem. Rev. 99, 2161 (1999)

    Google Scholar 

  53. J. Kongsted, C.B. Nielsen, K.V. Mikkelsen, O. Christiansen, K. Ruud, J. Chem. Phys. 126, 034510 (2007)

    Google Scholar 

  54. P.B. Karadakov, K. Morokuma, Chem. Phys. Lett. 317, 589 (2000)

    Article  ADS  Google Scholar 

  55. T. Vreven, K. Morokuma. J. Chem. Phys. 113, 2969 (2000)

    Google Scholar 

  56. M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber, K. Morokuma, J. Phys. Chem. 100, 19357 (1996)

    Article  Google Scholar 

  57. S. Humbel, S. Sieber, K. Morokuma, J. Chem. Phys. 105, 1959 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the grant of the President of the Russian Federation for Leading Scientific Schools (grant nr. 6267.2010.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Aminova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aminova, R.M., Baisupova, E.R. & Aganov, A.V. Calculations of 31P Magnetic Shielding Constants of Derivatives of Betaine and Phosphine Molecules Dissolved in Different Solvents by Using Supermolecular Model and Combined Methods of Quantum Chemistry and Molecular Mechanics. Appl Magn Reson 40, 147–170 (2011). https://doi.org/10.1007/s00723-010-0189-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-010-0189-x

Keywords

Navigation