Skip to main content
Log in

The Analysis of Hyperfine Shifts of Mono-Ligand High-Spin Cobalt(II) Pyrazolylborate Complexes

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this paper, we present the detailed study on the correlation of the nuclear magnetic resonance (NMR) parameters with the results of density functional theory calculations performed for paramagnetic high-spin cobalt(II) complexes with trispyrazolylborate ligands. This work focuses on estimation of dipolar and contact shifts in mono-ligand high-spin cobalt(II) pyrazolylborate systems along with discussion on 1H NMR properties of the mentioned tetra-, penta- and hexacoordinate complexes. The calculation results show frontier molecular orbitals that may be responsible for contact shift. The calculated contact shift values are compared with the dipolar shift and hyperfine ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Wuthrich, J. Biol. Chem. 25, 22059–22062 (1990)

    Google Scholar 

  2. A. Bax, M.J. Ikura, Biomol. NMR 1, 99–104 (1991)

    Article  Google Scholar 

  3. W. Rieping, M. Habeck, B. Bardiaux, A. Bernard, T.E. Malliavin, M. Nilges, Bioinformatics 23, 381–382 (2007)

    Article  Google Scholar 

  4. E. de Alba, N. Tjandra, Methods Mol. Biol. 278, 89–106 (2004)

    Google Scholar 

  5. G. Liu, Y. Shen, H.S. Atreya, D. Parish, Y. Shao, D.K. Sukumaran, R. Xiao, A. Yee, A. Lemak, A. Bhattacharya, T.A. Acton, C.H. Arrowsmith, G.T. Montelione, T. Szyperski, Proc. Natl. Acad. Sci. USA 102, 10487–10492 (2005)

    Article  ADS  Google Scholar 

  6. T. Quincy, Structural Biology, Practical NMR Applications (Springer, Berlin, 2005)

    Google Scholar 

  7. S. Gordon, T. Rule, K. Hitchens, Fundamentals of Protein NMR Spectroscopy (Springer, Dordrecht, 2006)

    Google Scholar 

  8. K. Wuthrich, NMR of Proteins and Nucleic Acids (Wiley, New York, 1986)

    Google Scholar 

  9. J. Cavanagh, W.J. Fairbrother, A.G. Palmer III, N.J. Skelton, Protein NMR Spectroscopy: Principles and Practice (Academic Press, San Diego, 1996)

    Google Scholar 

  10. J.P. Korb, G. Diakova, R.G. Bryant, J. Chem. Phys. 124, 134910 (2006)

    Article  ADS  Google Scholar 

  11. M. Querola, J.W. Chenb, A.A. Bogdanov Jr., Org. Biomol. Chem. 4, 1887–1895 (2006)

    Article  Google Scholar 

  12. P. Atkinson, B.S. Murray, D. Parker, Org. Biomol. Chem. 4, 3166–3171 (2006)

    Article  Google Scholar 

  13. M. Gochin, H. Roder, Protein Sci. 4, 296–305 (1995)

    Article  Google Scholar 

  14. D.J. Reijngoud, S. Lund-Katz, H. Hauser, M.C. Phillips, Biochemistry 21, 2977–2983 (1982)

    Article  Google Scholar 

  15. Y. Gao, N.C. Veitch, R.J.P. Williams, J. Biomol. NMR 1, 447–456 (1991)

    Article  Google Scholar 

  16. S. Trofimenko, Scorpionates: Polypyrazolylborate Ligands and Their Coordination Chemistry, 1st edn. (Imperial College Press, London, 1999)

    Google Scholar 

  17. C. Pettinari, Chelating Borate Ligands—Dedicated to Swiatoslaw Trofimenko (Imperial College Press, London, 2008)

    Book  Google Scholar 

  18. K. Długopolska, T. Ruman, M. Danilczuk, D. Pogocki, Appl. Magn. Reson. 35, 271–283 (2008)

    Article  Google Scholar 

  19. T. Ruman, M. Łukasiewicz, Z. Ciunik, S. Wolowiec, Polyhedron 20, 2551 (2001)

    Article  Google Scholar 

  20. A.L. Rheingold, L.M. Liable-Sands, J.A. Golan, S. Trofimenko, Eur. J. Inorg. Chem., 2003(15), 2767 (2003)

  21. A.L. Rheingold, L.M. Liable-Sands, J.A. Golen, G.P.A. Yap, S. Trofimenko, Dalton Trans., 4, 598 (2004)

    Google Scholar 

  22. T. Ruman, Z. Ciunik, E. Szklanny, S. Wolowiec, Polyhedron 21, 2743 (2002)

    Article  Google Scholar 

  23. F.H. Allen, Acta Crystallogr. Sect. B 58, 380–388 (2002)

    Article  Google Scholar 

  24. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  25. C.W. Bauschlicher Jr., H. Partridge, Chem. Phys. Lett. 240, 533 (1995)

    Article  ADS  Google Scholar 

  26. I. Carmichael, Nukleonika 41, 11 (2000)

    Google Scholar 

  27. J. Zwier, M. Wichers, J. Hoeth, A.M. Brouwer, J. Org. Chem. 66, 466 (2001)

    Article  Google Scholar 

  28. I. Carmichael, Acta Chem. Scand. 51, 567 (1997)

    Article  Google Scholar 

  29. I. Carmichael, Phys. Chem. A 101, 4633 (1997)

    Article  Google Scholar 

  30. G.L. Hug, I. Carmichael, R.W. Fessenden, J. Chem. Soc. Perkin Trans. 2, 907 (2000)

    Google Scholar 

  31. L.A. Eriksson, O.L. Malkina, V. Malkin, D.R. Salahub, J. Chem. Phys. 100, 5066 (1994)

    Article  ADS  Google Scholar 

  32. V. Barone, C. Adamo, N. Russo, Int. J. Quantum Chem. 52, 963 (1994)

    Article  Google Scholar 

  33. P.J. O’Malley, J. Phys. Chem. A 101, 6334 (1997)

    Article  Google Scholar 

  34. P.J. O’Malley, J. Comput. Chem. 20, 1292 (1999)

    Article  Google Scholar 

  35. E.R. Davidson, D. Feller, Chem. Rev. 86, 681 (1986)

    Article  Google Scholar 

  36. J.K. Labanowski, Simplified introduction to ab initio basis sets. Terms and notation (2001). http://www.chem.utas.edu.au/staff/yatesb/modules/mod5/jan_basis.html (Accessed 20 July 2009)

  37. F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 1999)

    Google Scholar 

  38. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03 version (Gaussian Inc., Wallingford, CT, 2004)

  39. E. Cances, B. Mennucci, J. Tomasi, J. Chem. Phys. 107, 3032 (1997)

    Article  ADS  Google Scholar 

  40. G.A. Zhurko, D.A. Zhurko, ChemCraft program, ver. 1.5 (2006). http://www.chemcraftprog.com (Accessed 1 Dec 2006)

  41. S.J. Wilkens, B. Xia, F. Weinhold, J.L. Markley, W.M. Westler, J. Am. Chem. Soc. 120, 4806–4814 (1998)

    Article  Google Scholar 

  42. J.P. Jesson, in NMR of Paramagnetic Molecules: Principles and Applications, ed. by G.N. La Mar, W.D. Horrocks Jr., R.H. Holm (Academic Press, London, 1973), pp. 2–52

  43. G.N. La Mar, in NMR of Paramagnetic Molecules: Principles and Applications, ed. by G.N. La Mar, W.D. Horrocks Jr., R.H. Holm (Academic Press, London, 1973), pp. 85–126

Download references

Acknowledgments

The calculations have been performed by employing the computational resources of the Biotechnology Center at the Rzeszów University of Technology, and the Interdisciplinary Center of Mathematical Modeling at the University of Warsaw (G28-21), Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Ruman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Długopolska, K., Kisała, J., Danilczuk, M. et al. The Analysis of Hyperfine Shifts of Mono-Ligand High-Spin Cobalt(II) Pyrazolylborate Complexes. Appl Magn Reson 38, 321–335 (2010). https://doi.org/10.1007/s00723-010-0127-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-010-0127-y

Keywords

Navigation