Skip to main content
Log in

Pulse EPR, ENDOR, and ELDOR Study of Anionic Flavin Radicals in Na+-Translocating NADH:Quinone Oxidoreductase

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The Na+-translocating nicotinamide adenine dinucleotide (NADH):quinine oxidoreductase (Na+–NQR) is a component of respiratory chain of various bacteria and it generates a redox-driven transmembrane electrochemical Na+ potential. It contains four different flavin prosthetic groups, including two flavin mononucleotide (FMN) residues covalently bound to the subunits NqrB and NqrC. Na+–NQR from Vibrio harveyi was poised at different redox potentials to prepare two samples, containing either both FMNNqrB and FMNNqrC or only FMNNqrB in a paramagnetic state. These two samples were comparatively studied using pulse electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and electron-electron double resonance (ELDOR) spectroscopy. The echo-detected EPR spectra and electron spin relaxation properties were very similar for flavin radicals in both samples. The splitting of the outer peaks in the proton ENDOR spectra, assigned to the C(8α) methyl protons, allows to identify both radicals as anionic flavosemiquinones. The mean interspin distance of 20.7 Å between these radicals was determined by pulse ELDOR experiment, which allows to estimate the edge-to-edge distance (r e) between these flavin centers as: 11.7 Å < r e < 20.7 Å. The direct electron transfer between FMNNqrB and FMNNqrC during the physiological turnover of the Na+–NQR complex is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.V. Bogachev, M.I. Verkhovsky, Biochemistry (Moscow) 70, 143–149 (2005)

    Article  Google Scholar 

  2. W. Zhou, Y.V. Bertsova, B. Feng, P. Tsatsos, M.L. Verkhovskaya, R.B. Gennis, A.V. Bogachev, B. Barquera, Biochemistry 38, 16246–16252 (1999)

    Article  Google Scholar 

  3. P.R. Rich, B. Meunier, F.B. Ward, FEBS Lett. 375, 5–10 (1995)

    Article  Google Scholar 

  4. M. Hayashi, K. Hirai, T. Unemoto, FEBS Lett. 363, 75–77 (1995)

    Article  Google Scholar 

  5. X.D. Pfenninger-Li, S.P. Albracht, R. van Belzen, P. Dimroth, Biochemistry 35, 6233–6242 (1996)

    Article  Google Scholar 

  6. A.V. Bogachev, Y.V. Bertsova, B. Barquera, M.I. Verkhovsky, Biochemistry 40, 7318–7323 (2001)

    Article  Google Scholar 

  7. M. Hayashi, Y. Nakayama, M. Yasui, M. Maeda, K. Furuishi, T. Unemoto, FEBS Lett. 488, 5–8 (2001)

    Article  Google Scholar 

  8. O. Juárez, M.J. Nilges, P. Gillespie, J. Cotton, B. Barquera, J. Biol. Chem. 283, 33162–33167 (2008)

    Article  Google Scholar 

  9. K. Turk, A. Puhar, F. Neese, E. Bill, G. Fritz, J. Steuber, J. Biol. Chem. 279, 21349–21355 (2004)

    Article  Google Scholar 

  10. A.V. Bogachev, L.V. Kulik, D.A. Bloch, Y.V. Bertsova, M.S. Fadeeva, M.I. Verkhovsky, Biochemistry 48, 6291–6298 (2009)

    Article  Google Scholar 

  11. A.V. Bogachev, D.A. Bloch, Y.V. Bertsova, M.I. Verkhovsky, Biochemistry 48, 6299–6304 (2009)

    Article  Google Scholar 

  12. A.V. Bogachev, Y.V. Bertsova, E.K. Ruuge, M. Wikström, M.I. Verkhovsky, Biochim. Biophys. Acta 1556, 113–120 (2002)

    Article  Google Scholar 

  13. B. Barquera, L. Ramirez-Silva, J.E. Morgan, M.J. Nilges, J. Biol. Chem. 281, 36482–36491 (2006)

    Article  Google Scholar 

  14. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001)

    Google Scholar 

  15. C. Gemperle, A. Schweiger, Chem. Rev. 91, 1481–1505 (1991)

    Article  Google Scholar 

  16. A. Schnegg, A.A. Dubinskii, M.R. Fuchs, Yu.A. Grishin, E.P. Kirilina, W. Lubitz, M. Plato, A. Savitsky, K. Mobius, Appl. Magn. Reson. 31, 59–98 (2007)

    Article  Google Scholar 

  17. S. Van Doorslaer, E. Vinck, Phys. Chem. Chem. Phys. 9, 4620–4638 (2008)

    Article  Google Scholar 

  18. M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, J. Magn. Reson. 142, 331–340 (2000)

    Article  ADS  Google Scholar 

  19. S.A. Dzuba, Uspekhi Khimii 76, 752–767 (2007)

    Google Scholar 

  20. Y.D. Tsvetkov, A.D. Milov, A.G. Maryasov, Uspekhi Khimii 77, 515–550 (2008)

    Google Scholar 

  21. P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Anal. Biochem. 150, 76–85 (1985)

    Article  Google Scholar 

  22. B. Barquera, J. Morgan, D. Lukoyanov, C.P. Scholes, R.B. Gennis, M.J. Nilges, J. Am. Chem. Soc. 125, 265–275 (2003)

    Article  Google Scholar 

  23. G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 73–498 (2006)

    Article  Google Scholar 

  24. O. Juárez, J.E. Morgan, B. Barquera, J. Biol. Chem. 284, 8963–8972 (2009)

    Article  Google Scholar 

  25. D.E. Edmondson, Biochem. Soc. Trans. 13, 593–600 (1985)

    Google Scholar 

  26. S. Weber, K. Mobius, G. Richter, C.W.M. Kay, J. Am. Chem. Soc. 123, 3790–3798 (2001)

    Article  Google Scholar 

  27. S. Weber, C.W.M. Kay, A. Bacher, G. Richter, R. Bittl, ChemPhysChem 6, 292–299 (2005)

    Article  Google Scholar 

  28. C.W.M. Kay, C. Elsasser, R. Bittl, S.R. Farrell, C. Thorpe, J. Am. Chem. Soc. 128, 76–77 (2006)

    Article  Google Scholar 

  29. A.J. Fielding, R.J. Usselman, N. Watmough, M. Slinkovic, F.E. Frerman, G.R. Eaton, S.S. Eaton, J. Magn. Reson. 190, 222–232 (2008)

    Article  ADS  Google Scholar 

  30. A. Savitsky, A.A. Dubinskii, M. Flores, W. Lubitz, K. Mobius, J. Phys. Chem. B 111, 6245–6262 (2007)

    Article  Google Scholar 

  31. L.V. Kulik, S.V. Paschenko, S.A. Dzuba, J. Magn. Reson. 159, 237–241 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Foundation for Basic Research (project nr. 07-04-00619), and by a grant of the President of the Russian Federation for scientific schools (project nr. NSh-551.2008.3). We are indebted to Prof. M. Verkhovsky for helpful discussions and for critical reading of the manuscript. We are thankful to Prof. S.A. Dzuba for continuous interest to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Kulik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulik, L.V., Pivtsov, A.V. & Bogachev, A.V. Pulse EPR, ENDOR, and ELDOR Study of Anionic Flavin Radicals in Na+-Translocating NADH:Quinone Oxidoreductase. Appl Magn Reson 37, 353–361 (2010). https://doi.org/10.1007/s00723-009-0075-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0075-6

Keywords

Navigation