Skip to main content
Log in

Neue Behandlungsmöglichkeiten des diffusen diabetischen Makulaödems

New treatment options for diffuse diabetic macular edema

  • Übersichtsarbeiten
  • Published:
Spektrum der Augenheilkunde Aims and scope Submit manuscript

Summary

WHO reports let assume that 180 million people suffer from diabetes worldwide. Diabetic macular edema is the most common cause of visual deterioration in these patients. Factors for the development of a diabetic macular edema are the duration of the disease, age at onset and general factors, which give evidence for the heaviness of the disease. Focal macular edema responds well to focal laser treatment whereas diffuse edema often persists despite modified grid laser treatment. For these eyes several new treatment options were evaluated during the last years. Since OCT investigations became more and more popular the role of the vitreous was of main interest. A thickened posterior hyloid was recognized as a diffusion barrier and cause of possible traction on the central retina. Numerous studies showed a visual increase and a decrease of the retinal thickness after vitrectomy in these patients. Intravitreal injections of triamcinolone acetonide seemed to displace surgical interventions. Several authors report of distinct improvements after intravitreal application of 4 mg. However, major problems are secondary glaucoma up to 68 %, secondary cataract development and the need for repeated injections due to a 3-months clearance of the substance in non-vitrectomized eyes. To avoid these complications long term sustain released systems with steroids which are implanted via the pars plana were described recently. New options are intravitreal anti-VEGF therapies. Promising reports with 3 different products (bevacizumab, ranibizumab and pegabtanib) show a good effectiveness for patients with diabetic macular edema. These studies are still running. Last but not least there are new systemic options (PKC ß inhibitors, somatostatin) under investigation. These substances are taken orally and could influence the progression of diabetic changes but not cure a diabetic edema so far.

Zusammenfassung

WHO Berichten zufolge leiden weltweit 180 Millionen Menschen an Diabetes mellitus. Das diabetische Makulaödem ist die häufigste Ursache für eine Visusverschlechterung bei diesen Patienten. Faktoren, die die Entwicklung fördern sind die Dauer der Erkrankung, das Alter bei Diagnosestellung und allgemeine Faktoren, die über die Schwere der Erkrankung aussagen. Fokale Makulaödeme sprechen gut auf Laserbehandlungen an während diffuse Ödeme oft trotz modifizierter Grid Laserbehandlung persistieren. Für diese Augen wurden während der letzten Jahre neue Behandlungsmethoden evaluiert. Seit die OCT Untersuchung an Popularität zunimmt, wurde die Bedeutung von Glaskörperveränderungen beim diabetischen Ödem klarer. Eine verdickte hintere Glaskörpergrenzschicht wurde als Diffusionsbarriere, aber auch als Ursache für mögliche Traktionen an der zentralen Netzhaut erkannt. Zahlreiche Studien weisen auf Sehverbesserungen und Abnahme der Netzhautdichte nach Vitrektomie und Membrane peeling in diesen Augen hin. Intravitreale Injektionen von Triamcinolonacetonid schienen chirurgische Eingriffe abzulösen. Viele Autoren berichten von deutlichen Verbesserungen nach einer intravitrealen Applikation von 4 mg. Es wurden jedoch Komplikationen, wie zum Beispiel sekundäre Drucksteigerungen, in bis zu 68 % der Fälle beschrieben, Die Wirkung des Medikaments lässt im nicht-vitrektomierten Auge nach ca. 3 Monaten nach, sodass wiederholte Injektionen erforderlich werden. Um dies zu vermeiden, wurden zuletzt Release Systeme mit Steroiden beschrieben, die über die Pars plana implantiert werden. Eine neue Option sind intravitreale Anti-VEGF Therapien. Vielversprechende Berichte mit 3 unterschiedlichen Produkten (Bevacizumab, Ranibizumab und Pegabtanib) zeigen eine gute Wirksamkeit bei Patienten mit diabetischem Makulaödem. Die Studien laufen derzeit noch. Nicht zuletzt sind neue systemische Optionen (PKC ß Inhibitoren, Somatostatin) geprüft worden. Diese Substanzen werden oral eingenommen und konnten bis jetzt die Progression von diabetischen Augenveränderungen aber nicht ein Makulaödem beeinflussen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Klein R, Klein BE, Moss SE, Davis MD, DeMets DL (1984) The Wisconsin Epidemiologic Study of Diabetic Retinopathy IV: diabetic macular edema. Ophthalmoogy 91: 1464–1474

    Article  CAS  Google Scholar 

  • Klein R, Moss SE, Klein BE, et al (1989) The Wisconsin Epidemiologic Study of Diabetic Retinopathy XI. The incidence of macular edema. Ophthalmology 96: 1501–1510

    Article  CAS  PubMed  Google Scholar 

  • Perkovich BT, Meyers SM (1988) Systemic factors affecting diabetic macular edema. Am J Ophthalmol 105: 211–212

    Article  CAS  PubMed  Google Scholar 

  • Walton KA, Meyer CH, Harkrider CJ, Cox TA, Toth CA (2002) Age-related changes in vitreous mobility as measured by video B scan ultrasound. Exp Eye Res 74: 173–180

    Article  CAS  PubMed  Google Scholar 

  • Sebag J, Buckingham B, Charles MA, Reiser K (1992) Biochemical abnormalities of vitreous in humans with proliferative diabetic retinopathy. Arch Opththalmol 110: 1472–1476

    Article  CAS  Google Scholar 

  • Sebag J, Nie S, Reiser K (1994) Raman spectroscopy of human vitreous in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 35: 2976–2980

    CAS  PubMed  Google Scholar 

  • Diabetic Retinopathy Study Research Group (1981) A modification of the Airlie House classification of diabetic retinopathy. Report 7. Invest Ophthalmol Vis Sci 21: 210–226

    Google Scholar 

  • Wilkinson CP, Ferris FL, Klein RE, Lee P, Agarth CD, Davis M, Dills D, Kampik A, et al (2003) Global Diabetic Retinopathy Project Group: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110: 1677–1682

    Article  CAS  PubMed  Google Scholar 

  • Frank RN, Schulz L, Abe K, Iezzi R (2004) Temporal variation in diabetic macular edema measured by optical coherence tomography. Ophthalmology 111: 211–217

    Article  PubMed  Google Scholar 

  • Campbell RJ, Coupland SG, Buhrmann RR, Kertes PJ (2007) Optimal optical coherence tomography-based measures in diagnosis of clinically significant macular edema: retinal volume versus foveal thickness. Arch Ophthalmol 125: 619–623

    Article  PubMed  Google Scholar 

  • Blankenship GW (1979) Diabetic macular edema and argon laser photocoagulation: a prospective randomized study. Ophthalmology 86: 69–78

    Article  CAS  PubMed  Google Scholar 

  • Early Treatment Diabetic Retinopathy Study Research Group (1985) Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report No. 1. Arch Ophthalmol 103: 1796–1806

    Article  Google Scholar 

  • McDonald HR, Schatz H (1985) Grid photocoagulation of diffuse macular edema. Retina 5: 65–72

    Article  CAS  PubMed  Google Scholar 

  • Olk RJ (1986) Modified grid argon (blue-green) laser photocoagulation for diffuse diabetic macular edema. Ophthalmology 93: 928–950

    Article  Google Scholar 

  • Lee CM, Olk RJ (1991) Modified grid laser photocoagulation for diffuse diabetic macular edema: long-term visual results. Ophthalmology 98: 1594–1602

    Article  CAS  PubMed  Google Scholar 

  • McNaught E, Foulds W, Allan D (1988) Grid photocoagulation improves reading ability in diffuse macular edema. Eye 2: 288–296

    Article  PubMed  Google Scholar 

  • Tachi N, Ogino N (1996) Long term follow up of grid photocoagulation for diffuse macular edema associated with diabetic retinopathy. Folia Ophthalmol Jpn 47: 1252–1256

    Google Scholar 

  • Luttrull JK, Spink CJ (2006) Serial optical coherence tomography of subthreshold diode laser micropulse photocoagulation for diabetic macular edema. Ophthalmic Surg Lasers Imaging 37(5): 370–377

    PubMed  Google Scholar 

  • Luttrull JK, Musch DC, Mainster MA (2005) Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema. Br J Ophthalmol 89(1): 74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasrallah FP, Jalkh AE, VanCoppenrolle F, et al (1988) The role of the vitreous in diabetic macular edema. Ophthalmology 95: 1335–1339

    Article  CAS  PubMed  Google Scholar 

  • Lewis H, Abrams GW, Blumenkranz MS, Campo RV (1992) Vitrectomy for diabetic macular traction and edema associated with posterior hyaloid traction. Ophthalmology 99: 753–759

    Article  CAS  PubMed  Google Scholar 

  • Hikichi T, Fujio N, Akiba Y, Takahashi M, Yoshida A (1997) Association between the short-term natural history of diabetic macular edema and the vitreomacular relationship in type II diabetes mellitus. Ophthalmology 104: 473–478

    Article  CAS  PubMed  Google Scholar 

  • Yang CM (2000) Surgical treatment for severe diffuse macular edema with massive hard exsudates. Retina 20: 121–125

    Article  CAS  PubMed  Google Scholar 

  • Gandorfer A, Messmer EM, Ulbig MW, Kampik A (2000) Resolution of diabetic macular edema after surgical removal of the posterior hyaloid and the inner limiting membrane. Retina 20: 126–133

    Article  CAS  PubMed  Google Scholar 

  • Tachi N, Ogino N (1996) Vitrectomy for diffuse macular edema in cases of diabetic retinopathy. Am J Ophthalmol 122: 258–260

    Article  CAS  PubMed  Google Scholar 

  • Pendergast SD, Hassan TS, Williams GA, et al (2000) Vitrectomy for diffuse diabetic macular edema associated with a taut premacular posterior hyloid. Am J Ophthalmol 130: 178–186

    Article  CAS  PubMed  Google Scholar 

  • LaHeij EC, Hendrikse F, Kessels AGH, Derhaag P (2001) Vitrectomy results in diabetic macular edema without evident vitreomacular traction. Graefe's Arch Clin Exp Ophthalmol 239: 264–270

    Article  CAS  Google Scholar 

  • Yamamoto T, Hitani K, Tskukahara I, et al (2003) Early postoperative retinal thickness changes and complications after vitrectomy for diabetic macular edema. Am J Ophthalmol 135: 14–19

    Article  PubMed  Google Scholar 

  • Stolba U, Binder S, Gruber D, Krebs I, Aggermann T, Neumaier B (2005) Vitrectomy for persistent diffuse diabetic macular edema. Am J Ophthalmol 140: 295–301

    Article  PubMed  Google Scholar 

  • Sebag J, Balazs EA (1984) Pathogenesis of CME: anatomic considerations af vitreoretinal adhesions. Surv Ophthalmol 29 (Suppl): 493–498

    Article  Google Scholar 

  • Lam RF, Lai WW, Chan WM, Liu DT, Lam DS (2006) Vitrectomy for diabetic macular edema with and without internal limiting membrane removal. Ophthalmologica 220: 206–210

    Article  PubMed  Google Scholar 

  • Yamamoto T, Hitani K, Sato Y, Yamashita H, Takeuchi S (2005) Vitrectomy for diabetic macular edema with and without internal limiting membrane removal. Ophthalmologica 219: 206–213

    Article  PubMed  Google Scholar 

  • Patel JI, Hykin PG, Schadt M, Luong V, Fitzke F, Gregor ZJ (2006) Pars plana vitrectomy with and without peeling of the inner limiting membrane for diabetic macular edema. Retina 26: 5–13

    Article  PubMed  Google Scholar 

  • Kamura Y, Sato Y, Isomae T, Shimada H (2005) Effects of internal limiting membrane peeling in vitrectomy on diabetic cystoid macular edema patients. Jpn J Ophthalmol 49(4): 297–300

    Article  PubMed  Google Scholar 

  • Bardak Y, Cekic O, Tig SU (2006) Comparison of ICG-assisted ILM peeling and triamcinolone-assisted posterior vitreous removal in diffuse diabetic macular oedema. Eye 20(12): 1357–1359

    Article  CAS  PubMed  Google Scholar 

  • Haritogolu C, Gass CA, Gandorfer A, Kampik A (2002) ICG-assisted peeling of the retinal ILM. Ophthalmology 109(6): 1039

    Article  Google Scholar 

  • Tsuiki E, Fujikawa A, Miyamura N, Yamada K, Mishima K, Kitaoka T (2007) Visual field defects after macular hole surgery with indocyanine green-assisted internal limiting membrane peeling. Am J Ophthalmol 143(4): 704–705

    Article  PubMed  Google Scholar 

  • Hillenkamp J, Saikia P, Hermann WA, Framme C, Gabel VP, Sachs HG (2007) Surgical removal of idiopathic epiretinal membrane with or without the assistance of indocyanine green: a randomised controlled clinical trial. Graefe's Arch Clin Exp Ophthalmol 245(7): 973–979

    Article  CAS  Google Scholar 

  • Schmidt JC, Rodrigues EB, Meyer CH, Hörle S, Kroll P (2004) A modified technique to stain the internal limiting membrane with indocyanin green. Ophthalmologica 218: 176–179

    Article  PubMed  Google Scholar 

  • Schmid-Kubista KE, Lamar P, Schenk A, Stolba U, Binder S: Comparison of macular function and visual fields after Membrane blue or infracyanin green staining in vitroretinal surgery. (Submitted)

  • Kralinger MT, Pedri M, Kralinger F, Troger J, Kieselbach GF (2006) Long-term outcome after vitrectomy for diabetic macular edema. Ophthalmologica 220: 147–152

    Article  PubMed  Google Scholar 

  • Ikeda T, Sato K, Katano T, et al (2000) Improved visual acuity following pars plana vitrectomy for diabetic cystoid macular edema and detached posterior hyaloid. Retina 20: 220–222

    Article  CAS  PubMed  Google Scholar 

  • Otani T, Kishi S (2000) Tomographic assessment of vitreous surgery for diabetic macular edema. Am J Ophthalmol 129: 487–494

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Naoko A, Takeuchi S (2001) Vitrectomy for diabetic macular edema: the role of posterior vitreous detachment and epimacular membrane. Am J Ophthalmol 132: 369–377

    Article  CAS  PubMed  Google Scholar 

  • Massin P, Duguid G, Erginay A, Haouchine B, Gaudric A (2003) Optical coherence tomography for evaluating diabetic macular edema before and after vitrectomy. Am J Ophthalmol 135: 169–177

    Article  PubMed  Google Scholar 

  • Shah SP, Patel M, Thomas D, Aldington S, Laidlaw DAH (2006) Factors predicting outcome of vitrectomy for diabetic macular oedema: results of a prospective study. Br J Ophthalmol 90: 33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanson E, Novack RL, Hatchell DL (1990) Vitrectomy prevents retinal hypoxia in branch retinal vein occlusion. Invest Ophthalmol Vis Sci 31: 284–289

    Google Scholar 

  • Stefansson E (2001) The therapeutic effect of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand 79: 435–440

    Article  CAS  PubMed  Google Scholar 

  • Stefansson E, Landers MB (2006) How does vitrectomy affect diabetic macular edema? Am J Ophthalmol 141: 984

    Article  PubMed  Google Scholar 

  • Kent D, Vinores SA, Campochiaro PA (2000) Macular oedema: the role of soluble mediators. Br J Ophthalmol 84: 542–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song SJ, Sohn JH, Park KH (2007) Evaluation of the efficacy of vitrectomy for persistent diabetic macular edema and associated factors predicting outcome. Korean J Ophthalmol 21(3): 146–150

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanyali A, Nohutcu AF, Horozoglu F, Celik E (2005) Modified grid laser photocoagulation versus pars plana vitrectomy with internal limiting membrane removal in diabetic macular edema. Am J Ophthalmol 139(5): 795–801

    Article  PubMed  Google Scholar 

  • Thomas D, Bunce C, Moorman C, Laidlaw DA (2005) A randomized controlled feasibility trial of vitrectomy versus laser for diabetic macular oedema. Br J Ophthalmol 89(1): 81–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parolini B, Panozzo G, Gusson E, Pinackatt S, Bertoldo G, Rozzini S, Pignotto S (2004) Diode laser, vitrectomy and intravitreal triamcinolone. A comparative study for the treatment of diffuse non tractional diabetic macular edema. Semin Ophthalmol 19(1–2): 1–12

    Article  CAS  PubMed  Google Scholar 

  • Gibran SK, Khan K, Jungkim S, Cleary PE (2007) Optical coherence tomography pattern may predict visual outcome after intravitreal triamcinolone for diabetic macular edema. Ophthalmology 114: 890–894

    Article  CAS  PubMed  Google Scholar 

  • Azzolini C, D'Angelo A, Maestranzi G, Codonotti M, Della Valle P, Prati M, Brancato R (2004) Intrasurgical plasmin enzyme in diabetic macular edema. Am J Ophthalmol 138: 560–566

    Article  CAS  PubMed  Google Scholar 

  • Machemer R, Sugita G, Tano Y (1979) Treatment of intraocular proliferations with intravitreal steroids. Trans Am Ophthalmol Soc 77: 171–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tano Y, Sugita G, Abrams G, Machemer R (1980) Inhibition of intraocular proliferation with intravitreal corticosteroids. Am J Ophthalmol 89: 131–136

    Article  CAS  PubMed  Google Scholar 

  • Tano Y, Chandler D, Machemer R (1980) Treatment of intraocular proliferation with intravitreal injection of triamcinolone actinide. Am J Ophthalmol 90: 810–816

    Article  CAS  PubMed  Google Scholar 

  • Schindler RH, Chandler DB, Tresher R, Machemer R (1982) The clearance of intravitreal triamcinolone acetonide. Am J Ophthalmol 93: 415–417

    Article  CAS  PubMed  Google Scholar 

  • Scholes GN, O'Brien WJ, Abrams GW, Kubicek MF (1985) Clearance of triamcinolone from vitreous. Arch Ophthalmol 103: 1567–1569

    Article  CAS  PubMed  Google Scholar 

  • Folkmann J, Ingber DE (1987) Angiostatic steroids. Method of discovery and mechanism of action. Ann Surg 206: 374–383

    Article  Google Scholar 

  • Penfold PL, Wong JG, Gyory J, Billson FA (2001) Effects of triamcinolone acetonide on microglial morphology and quantitative expression of MHC-II in exsudative macular degeneration. Clin Exp Ophthalmol 29: 188–192

    Article  CAS  Google Scholar 

  • Nauck M, Karakiulakis G, Perruchoud AP, Papakonstantinou E, Roth M (1998) Corticostroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur J Pharmacol 341: 309–315

    Article  CAS  PubMed  Google Scholar 

  • Penfold PN, Wen L, Madigan MC, King NJ, Provis JM (2002) Modulation of permeabiltiy and adhesion molecule expression by human choroidal endothelial cells. Invest Ophthalmol Vis Sci 43: 3125–3130

    PubMed  Google Scholar 

  • Bhattacherjee P, Williams RN, Eakins KE (1982) A comparison of the ocular antiinflammatory activity of steroidal and nonsteroidal compounds in the rat. Invest Ophthalmol Vis Sci 24: 1143–1146

    Google Scholar 

  • Umland SP, Nahrebne DK, Razac S, Beavis A, Pennline KJ, Egan RW, Billah MM (1997) The inhibitory effets of topically active glucocorticoids on IL-4, IL-5, and interferon gamma production by cultured primary CD4+T cells. J Allergy Clin Immunol 100: 511–519

    Article  CAS  PubMed  Google Scholar 

  • Itakura H, Akiyama H, Hagimura N, Doi H, Tanaka T, Kishi S, Kurabayashi M (2005) Triamcinolone acetonide suppresses interleukin-1 mediated increase in vascular endothelial growth factor expression in cultured rat Müller cells. Graefe's Arch Clin Exp Ophthalmol 28: 1–6

    Google Scholar 

  • Martidis A, Duker JS, Greenberg PB (2002) Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology 109: 920–927

    Article  PubMed  Google Scholar 

  • Jonas JB, Kreissig I, Söfker A, Degenring RF (2003) Intravitreal injection of triamcinolone for diffuse diabetic macular edema. Arch Ophthalmol 121(1): 57–61

    Article  CAS  PubMed  Google Scholar 

  • Sutter FK, Simpson JM, Gillies MC (2004) Intravitreal triamcinolone for diabetic macular edema that persists after laser treament: three-month efficacy and safety results of a prospective, randomized, double masked, placebo-controlled clinical trial. Ophthalmology 111: 2044–2049

    Article  PubMed  Google Scholar 

  • Gillies MC, Sutter FK, Simpson JM, et al (2006) Intravitreal triamcinolone for refractory diabetic macular edema: two year results of a double masked, placebo controlled, randomized clinical trial. Ophthalmology 113: 1533–1538

    Article  PubMed  Google Scholar 

  • Bonini-Filho MA, Jorge B, Barbosa JC, et al (2005) Intraviteal injection versus sub-Tenon's infusion of triamcinolone acetonide for refractory diabetic macular edema: a randomized clinical trial. Invest Ophthalmol Vis Sci 46: 3845–3849

    Article  PubMed  Google Scholar 

  • Cardillo JA, Melo LA Jr, Costa RA, et al (2005) Comparison of intravitreal versus posterior sub-Tenon's capsule injection of triamcinolone acetonide for diffuse diabetic macular edema. Ophthalmology 112: 1557–1563

    Article  PubMed  Google Scholar 

  • Avitabile T, Longo A, Reibaldi A (2005) Intravitreal triamcinolone compared with macular laser grid photocoagulation for the treatment of cystoid macular edema. Am J Ophthalmol 140: 695–702

    Article  CAS  PubMed  Google Scholar 

  • Kang SW, Sa HS, Cho HY, et al (2006) Macular grid photocoagulation after intravitreal triamcinolone acetonide for diffuse diabetic macular edema. Arch Ophthalmol 124: 653–657

    Article  CAS  PubMed  Google Scholar 

  • Spandau UH, Derse M, Schmitz-Valckenberg P, Papoulis C, Jonas JB (2005) Dosage dependency of intravitreal triamcinolone acetonide as treatment for diabetic macular edema. Br J Ophthalmol 139: 999–1003

    Article  Google Scholar 

  • Pearson P, Levy B, Comstock T (2006) Fluocinolone Acetonide Implant Study Group: Fluocinolone acetonide intravitreal implant to treat diabetic macular edema: 3-years results of a multi-center clinical trial. ARVO, Fort Lauderdale, April 2006, Abstract 5442

  • Kuppermann BD, Williams GA, Blumenkranz MS, et al (2006) Efficacy and safety of a novel intravitreous dexamethasone drug delivery system after applicator or incisional placement in patients with macular edema. ARVO, Fort Lauderdale, April 2006; Abstract 5913

  • Jonas JB, Degenring RF, Kreissig I, et al (2005) Intraocular pressure elevation after intravitreal triamcinolone acetonide injection. Ophthalmology 112: 593–598

    Article  PubMed  Google Scholar 

  • Lie S, Stolba U, Goll A, Janowitz S, Binder S (submitted) Intravitreal triamcinolone acetonide and intraocular pressure: inter-eye difference after application of vehicle removal solution. Graefe's Arch Clin Exp Ophthalmol

  • Thompson JT (2006) Cataract formation and other complications of intraviteal triamcinolone for macular edema. Am J Ophthalmol 141: 629–637

    Article  CAS  PubMed  Google Scholar 

  • Roth DB, Chieh J, Spirn MJ, et al (2003) Noninfectious endophthalmitis associated with intravitreal triamcinolone injection. Arch Ophthalmol 121: 1279–1982

    Article  PubMed  Google Scholar 

  • Westfall AC, Osborn A, Kuhl D, et al (2005) Acute endophthalmitis incidence: intravitreal triamcinolone. Arch Ophthalmol 123: 1075–1077

    Article  PubMed  Google Scholar 

  • Aggermann T, Stolba U, Brunner S, Binder S (2006) Endophthalmitis with retinal necrosis following intraviteal triamcinolone acetonide injection. Ophthalmologica 220: 409

    Article  Google Scholar 

  • Funatsu H, Yamashita H, Nakamura S, et al (2006) Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology 113: 294–301

    Article  PubMed  Google Scholar 

  • Brooks HL, Caballer S, Newell CK (2004) Vitreous levels of vascular endothelial growth factor and stroma derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol 122: 1801–1807

    Article  CAS  PubMed  Google Scholar 

  • Ishida S, Usui T, Yamashiro K, et al (2003) VEGF164 is proinflammatory in the diabetic retina. Invest Ophthalmol Vis Sci 44: 2155–2162

    Article  PubMed  Google Scholar 

  • Cunningham ET, Adamis AP, Altaweel M, et al (2005) A phase II randomized double-masked trial of pegabtanib, an antivascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 112: 1747–1757

    Article  PubMed  Google Scholar 

  • Haritoglou C, Kook D, Neubauer A, et al (2005) Intravitreal bevacizumab (Avastin) therapy for persistent diffuse diabetic macular edema. Retina 26: 999–1005

    Article  Google Scholar 

  • Arevalo JF, Fromow-Guerra J, Quiroz-Mercado H, et al (2007) Pan- American Collaborative Retina Study Group. Primary intravitreal bevacizumab (Avastin) for diabetic macular edema: results from the Pan-American Collaborative Retina Study Group at 6-month follow up. Ophthalmology 114: 743–750

    Article  PubMed  Google Scholar 

  • Chun DW, Heier JS, Topping TM, et al (2006) A pilot study of multiple intravitreal injections of ranibizumab in patients with center involving clinically significant diabetic macular edema. Ophthalmology 113: 1706–1712

    Article  PubMed  Google Scholar 

  • Aiello LP (2002) The potential role of PKC beta in diabetic retinopathy and macular edema. Surv Ophthalmol 47 [Suppl 2]: 263–269

    Article  Google Scholar 

  • Boehm BO (2007) Use of long-acting somatostain analogue treatment in diabetic retinopathy. Dev Ophthalmol 39: 111–121

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Stolba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolba, U., Binder, S. Neue Behandlungsmöglichkeiten des diffusen diabetischen Makulaödems. Spektrum Augenheilkd. 21, 297–304 (2007). https://doi.org/10.1007/s00717-007-0231-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00717-007-0231-z

Key words

Schlüsselwörter

Navigation