Skip to main content

Abstract

Diabetic macular edema (DME) is the most common cause of visual deterioration in patients affected by diabetes mellitus. Grid and focal laser photocoagulation, according to the ETDRS recommendations, have been considered the mainstay treatment for decades. With the advent of the new intravitreal pharmacotherapies, such as anti-vascular endothelial growth factor (VEGF) agents and steroids, a new scenario has opened in the management of such a complex disease. An advantage of intravitreal injections is the chance to promote visual recovery. Nevertheless, this approach, requiring repeated monthly interventions, may amplify the procedure-related adverse events. In order to improve the patients’ response and reduce the frequency of retreatments, several trials have demonstrated the role of extended-release intravitreal drug delivery systems as more long-lasting alternatives or combination theraphy. Finally, new agents are currently under investigation to refine the available therapeutic strategies. In this deluge of different treatment options, head-to-head comparison between different drugs and procedures is still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green WR. Retina. In: Spencer W, editor. Ophthalmic pathology. Philadelphia: W.B. Saunders; 1996.

    Google Scholar 

  2. Ophir A, Martinez MR, Mosqueda P, et al. Vitreous traction and epiretinal membranes in diabetic macular oedema using spectral-domain optical coherence tomography. Eye. 2010;24:1545–53.

    Article  CAS  PubMed  Google Scholar 

  3. Apple DJ, Rabb M. Fundus. In: Ocular pathology: clinical applications and self-assessment. St. Louis: Mosby; 1998.

    Google Scholar 

  4. Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema, ETDRS report no 1. Arch Ophthalmol. 1985;103:1796–806.

    Article  Google Scholar 

  5. Wilkinson CP, Ferris FL III, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–82.

    Article  CAS  PubMed  Google Scholar 

  6. Bandello F, Battaglia Parodi M, Tremolada G, et al. Steroids as part of combination treatment: the future for the management of macular edema? Ophthalmologica. 2010;224:41–5.

    Article  CAS  PubMed  Google Scholar 

  7. Parodi Battaglia M, Iacono P, Cascavilla M, Zucchiatti I, Bandello F. A pathogenetic classification of diabetic macular edema. Ophthalmic Res. 2018;60:23–8.

    Article  PubMed  Google Scholar 

  8. Do Carmo A, Ramos P, Reis A, et al. Breakdown of the inner and outer blood retinal barrier in streptozotocin-induced diabetes. Exp Eye Res. 1998;67:569–75.

    Article  Google Scholar 

  9. Nishikiori N, Osanai M, Chiba H, et al. Glial cell-derived cytokines attenuate the breakdown of vascular integrity in diabetic retinopathy. Diabetes. 2007;56:1333–40.

    Article  CAS  PubMed  Google Scholar 

  10. Cohen AI. A possible cytological basis for the “R” membrane in the vertebrate eye. Nature. 1965;205:1222–3.

    Article  Google Scholar 

  11. Early Treatment Diabetic Retinopathy Study Research Group. Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early treatment diabetic retinopathy study report number 2. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1987;94:761–4.

    Article  Google Scholar 

  12. Weinberger D, Fink-Cohen S, Gaton DD, et al. Non-retinovascular leakage in diabetic maculopathy. Br J Ophthalmol. 1995;79:728–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wessel MM, Nair N, Aaker GD. Peripheral retinal ischaemia, as evaluated by ultra-widefield fluorescein angiography, is associated with diabetic macular oedema. Br J Ophthalmol. 2012;96:694–8.

    Article  PubMed  Google Scholar 

  14. Rabiolo A, Parravano M, Querques L, et al. Ultra-wide-field fluorescein angiography in diabetic retinopathy: a narrative review. Clin Ophthalmol. 2017;11:803–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Horii T, Murakami T, Nishijima K, et al. Relationship between fluorescein pooling and optical coherence tomographic reflectivity of cystoid spaces in diabetic macular edema. Ophthalmology. 2012;119:1047–55.

    Article  PubMed  Google Scholar 

  16. Byeon SH, Chu YK, Hong YT, et al. New insights into the pathoanatomy of diabetic macular edema: angiographic patterns and optical coherence tomography. Retina. 2012;32:1087–99.

    Article  PubMed  Google Scholar 

  17. Deák GG, Bolz M, Ritter M, Diabetic Retinopathy Research Group Vienna, et al. A systematic correlation between morphology and functional alterations in diabetic macular edema. Invest Ophthalmol Vis Sci. 2010;51:6710–4.

    Article  PubMed  Google Scholar 

  18. Framme C, Schweizer P, Imesch M, et al. Behavior of SD-OCT-detected hyperreflective foci in the retina of anti-VEGF treated patients with diabetic macular edema. Invest Ophthalmol Vis Sci. 2012;53:5814–8.

    Article  CAS  PubMed  Google Scholar 

  19. Uji A, Murakami T, Nishijima K, et al. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. Am J Ophthalmol. 2012;153:710–7.

    Article  PubMed  Google Scholar 

  20. Frizziero L, Parrozzani R, Midena G, et al. Hyperreflective intraretinal spots in radiation macular edema on spectral domain optical coherence tomography. Retina. 2016;36(9):1664–9.

    Article  PubMed  Google Scholar 

  21. Vujosevic S, Bini S, Torresin T, et al. Hyperreflective retinal spots in normal and diabetic eyes: B-Scan and en face spectral domain optical coherence tomography evaluation. Retina. 2017;37(6):1092–103.

    Article  PubMed  Google Scholar 

  22. Vujosevic S, Berton M, Bini S, et al. Hyperreflective retinal spots and visual function after anti-vascular endothelial growth factor treatment in center-involving diabetic macular edema. Retina. 2016;36(7):1298–308.

    Article  CAS  PubMed  Google Scholar 

  23. Ota M, Nishijima K, Sakamoto A, et al. Optical coherence tomographic evaluation of foveal hard exudates in patients with diabetic maculopathy accompanying macular detachment. Ophthalmology. 2010;117(10):1996–2002.

    Article  PubMed  Google Scholar 

  24. Niu S, Yu C, Chen Q, et al. Multimodality analysis of hyper-reflective foci and hard exudates in patients with diabetic retinopathy. Sci Rep. 2017;7(1):1568. https://doi.org/10.1038/s41598-017-01733-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vujosevic S, Torresin T, Berton M, et al. Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities. Am J Ophthalmol. 2017;181:149–55.

    Article  PubMed  Google Scholar 

  26. Comyn O, Heng LZ, Ikeji F, et al. Repeatability of Spectralis OCT measurements of macular thickness and volume in diabetic macular edema. Invest Ophthalmol Vis Sci. 2012;53:7754–9.

    Article  PubMed  Google Scholar 

  27. Chan A, Duker JS. A standardized method for reporting changes in macular thickening using optical coherence tomography. Arch Ophthalmol. 2005;123:939–43.

    Article  PubMed  Google Scholar 

  28. Diabetic Retinopathy Clinical Research Network, Bressler NM, Miller KM, Beck RW, et al. Observational study of subclinical diabetic macular edema. Eye. 2012;26:833–40.

    Article  PubMed Central  Google Scholar 

  29. Tremolada G, Pierro L, de Benedetto U, et al. Macular micropseudocysts in early stages of diabetic retinopathy. Retina. 2011;31:1352–8.

    Article  PubMed  Google Scholar 

  30. Murakami T, Nishijima K, Akagi T, et al. Optical coherence tomographic reflectivity of photoreceptors beneath cystoid spaces in diabetic macular edema. Invest Ophthalmol Vis Sci. 2012;53:1506–11.

    Article  PubMed  Google Scholar 

  31. Maheshwary AS, Oster SF, Yuson RM, et al. The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema. Am J Ophthalmol. 2010;150(1):63–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sun JK, Lin MM, Lammer J, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014;132(11):1309–16.

    Article  PubMed  Google Scholar 

  33. Lee DH, Kim JT, Jung DW, et al. The relationship between foveal ischemia and spectral-domain optical coherence tomography findings in ischemic diabetic macular edema. Invest Ophthalmol Vis Sci. 2013;54:1080–5.

    Article  PubMed  Google Scholar 

  34. Gajree S, Borooah S, Dhillon B. Imaging in diabetic retinopathy: a review of current and future techniques. Curr Diabetes Rev. 2017;13(1):26–34.

    Article  PubMed  Google Scholar 

  35. Querques G, Lattanzio R, Querques L, et al. Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci. 2012;53:6017–24.

    Article  PubMed  Google Scholar 

  36. Esmaeelpour M, Povazay B, Hermann B, et al. Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:5311–6.

    Article  PubMed  Google Scholar 

  37. Vujosevic S, Martini F, Cavarzeran F, et al. Macular and peripapillary choroidal thickness in diabetic patients. Retina. 2012;32:1781–90.

    Article  PubMed  Google Scholar 

  38. de Freytas A, Gallego Pinazo R, Cisneros Lanuza Á. Subfoveal choroidal thickness in eyes with diabetic macular oedema using swept source optical coherence tomography. Arch Soc Esp Oftalmol. 2016;91(5):228–31.

    Article  PubMed  Google Scholar 

  39. Wang X, Li S, Li W, Hua Y, Wu Q. Choroidal variations in diabetic macular edema: fluorescein angiography and optical coherence tomography. Curr Eye Res. 2018;43(1):102–8.

    Article  PubMed  Google Scholar 

  40. Wanek J, Zelkha R, Lim JI, Shahidi M. Feasibility of a method for en face imaging of photoreceptor cell integrity. Am J Ophthalmol. 2012;152:807–14.

    Article  Google Scholar 

  41. Kim Y, Yu SY, Kwak HW. En face spectral-domain optical coherence tomography imaging of outer retinal hard exudates in diabetic macular edema based on optical coherence tomography patterns. Ophthalmic Surg Lasers Imaging Retina. 2016;47(4):313–21.

    Article  PubMed  Google Scholar 

  42. Srinivas S, Nittala MG, Hariri A, et al. Quantification of intraretinal hard exudates in eyes with diabetic retinopathy by optical coherence tomography. Retina. 2018;38(2):231–6.

    Article  PubMed  Google Scholar 

  43. Somfai GM, Tátrai E, Ferencz M, et al. Retinal layer thickness changes in eyes with preserved visual acuity and diffuse diabetic macular edema on optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2010;41:593–7.

    Article  PubMed  Google Scholar 

  44. Pierro L, Iuliano L, Cicinelli MV, Casalino G, Bandello F. Retinal neurovascular changes appear earlier in type 2 diabetic patients. Eur J Ophthalmol. 2017;27(3):346–51.

    Article  PubMed  Google Scholar 

  45. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

    Article  PubMed  Google Scholar 

  46. Parravano M, De Geronimo D, Scarinci F, et al. Diabetic microaneurysms internal reflectivity on spectral-domain optical coherence tomography and optical coherence tomography angiography detection. Am J Ophthalmol. 2017;179:90–6.

    Article  PubMed  Google Scholar 

  47. Hamada M, Ohkoshi K, Inagaki K, Ebihara N, Murakami A. Visualization of microaneurysms using optical coherence tomography angiography: comparison of OCTA en face, OCT B-scan, OCT en face, FA, and IA images. Jpn J Ophthalmol. 2018;62(2):168–75.

    Article  PubMed  Google Scholar 

  48. Gill A, Cole ED, Novais EA, et al. Visualization of changes in the foveal avascular zone in both observed and treated diabetic macular edema using optical coherence tomography angiography. Int J Retina Vitreous. 2017;3:19.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee J, Moon BG, Cho AR, Yoon YH. Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology. 2016;123(11):2368–75.

    Article  PubMed  Google Scholar 

  50. Moon BG, Um T, Lee J, Yoon YH. Correlation between deep capillary plexus perfusion and long-term photoreceptor recovery after diabetic macular edema treatment. Ophthalmol Retina. 2017;2:235–43.

    Article  PubMed  Google Scholar 

  51. Moein HR, Novais EA, Rebhun CB, et al. Optical coherence tomography angiography to detect macular capillary ischemia in patients with inner retinal changes after resolved diabetic macular edema. Retina. 2017. [Epub ahead of print].

    Google Scholar 

  52. Mané V, Dupas B, Gaudric A, et al. Correlation between cystoid spaces in chronic diabetic macular edema and capillary nonperfusion detected by optical coherence tomography angiography. Retina. 2016;36(Suppl 1):S102–10.

    Article  PubMed  Google Scholar 

  53. de Carlo TE, Chin AT, Joseph T, et al. Distinguishing diabetic macular edema from capillary nonperfusion using optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina. 2016;47(2):108–14.

    Article  PubMed  Google Scholar 

  54. Ghasemi Falavarjani K, Iafe NA, Hubschman JP, Tsui I, Sadda SR, Sarraf D. Optical coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-VEGF therapy in eyes with diabetic macular edema and retinal vein occlusion. Invest Ophthalmol Vis Sci. 2017;58(1):30–4.

    Article  PubMed  CAS  Google Scholar 

  55. Coscas G, Lupidi M, Coscas F. Optical coherence tomography angiography in diabetic maculopathy. Dev Ophthalmol. 2017;60:38–49.

    Article  PubMed  Google Scholar 

  56. Hatef E, Colantuoni E, Wang J, et al. The relationship between macular sensitivity and retinal thickness in eyes with diabetic macular edema. Am J Ophthalmol. 2011;152:400–405.e2.

    Article  PubMed  Google Scholar 

  57. Grenga P, Lupo S, Domanico D, Vingolo EM. Efficacy of intravitreal triamcinolone acetonide in long standing diabetic macular edema: a microperimetry and optical coherence tomography study. Retina. 2008;28:1270–5.

    Article  PubMed  Google Scholar 

  58. Nakamura Y, Mitamura Y, Ogata K, et al. Functional and morphological changes of macula after subthreshold micropulse diode laser photocoagulation for diabetic macular oedema. Eye (Lond). 2010;24:784–8.

    Article  CAS  Google Scholar 

  59. Vujosevic S, Bottega E, Casciano M. Microperimetry and fundus autofluorescence in diabetic macular edema: subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina. 2010;30:908–16.

    Article  PubMed  Google Scholar 

  60. Vujosevic S, Casciano M, Pilotto E, et al. Diabetic macular edema: fundus autofluorescence and functional correlations. Invest Ophthalmol Vis Sci. 2011;52(1):442–8.

    Article  PubMed  Google Scholar 

  61. Sachdev A, Edington M, Morjaria R, Chong V. Comparing microperimetric and structural findings in patients with branch retinal vein occlusion and diabetic macular edema. Retina. 2017. [Epub ahead of print].

    Google Scholar 

  62. Greenstein VC, Chen H, Hood DC, et al. Retinal function in diabetic macular edema after focal laser photocoagulation. Invest Ophthalmol Vis Sci. 2000;41:3655–64.

    CAS  PubMed  Google Scholar 

  63. Terasaki H, Kojima T, Niwa H, et al. Changes in focal macular electroretinograms and foveal thickness after vitrectomy for diabetic macular edema. Invest Ophthalmol Vis Sci. 2003;44:4465–72.

    Article  PubMed  Google Scholar 

  64. Lövestam-Adrian M, Holm K. Multifocal electroretinography amplitudes increase after photocoagulation in areas with increased retinal thickness and hard exudates. Acta Ophthalmol. 2010;88:188–92.

    Article  PubMed  Google Scholar 

  65. Fu Y, Wang P, Meng X, Du Z, Wang D. Structural and functional assessment after intravitreal injection of ranibizumab in diabetic macular edema. Doc Ophthalmol. 2017;135(3):165–73.

    Article  PubMed  Google Scholar 

  66. Waldstein SM, Hickey D, Mahmud I, et al. Two-wavelength fundus autofluorescence and macular pigment optical density imaging in diabetic macular oedema. Eye. 2012;26:1078–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chung H, Park B, Shin HJ, et al. Correlation of fundus autofluorescence with spectral-domain optical coherence tomography and vision in diabetic macular edema. Ophthalmology. 2012;119(5):1056–65.

    Article  PubMed  Google Scholar 

  68. Vujosevic S, Trento B, Bottega E. Scanning laser ophthalmoscopy in the retromode in diabetic macular edema. Acta Ophthalmol. 2012;90:e374–80.

    Article  PubMed  Google Scholar 

  69. Han DP, Croskrey JA, Dubis AM, et al. Adaptive optics and spectral-domain optical coherence tomography of human photoreceptor structure after short-duration [corrected] pascal macular grid and panretinal laser photocoagulation. Arch Ophthalmol. 2012;130:518–21.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yoshitake S, Murakami T, Uji A, et al. Clinical relevance of quantified fundus autofluorescence in diabetic macular oedema. Eye (Lond). 2015;29(5):662–9.

    Article  CAS  Google Scholar 

  71. Early Treatment Diabetic Retinopathy Study Research Group. Techniques for scatter and local photocoagulation treatment of diabetic retinopathy. ETDRS report number 3. Int Ophthalmol Clin. 1987;27:254–64.

    Article  Google Scholar 

  72. Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema. ETDRS report number 4. Int Ophthalmol Clin. 1987;27:265–72.

    Article  Google Scholar 

  73. Ferris F III, Davis MD. Treating 20/20 eyes with diabetic macular edema. Arch Ophthalmol. 1999;117:675–6.

    Article  PubMed  Google Scholar 

  74. Early Treatment Diabetic Retinopathy Study (Research) Group. Focal photocoagulation treatment of diabetic macular edema. Relationship of treatment effect to fluorescein angiographic and other retinal characteristics at baseline: ETDRS report no. 19. Arch Ophthalmol. 1985;113:1144–55.

    Google Scholar 

  75. Wilson DJ, Finkelstein D, Quigley HA, Green WR. Macular grid photocoagulation. An experimental study on the primate retina. Arch Ophthalmol. 1988;106:100–5.

    Article  CAS  PubMed  Google Scholar 

  76. Arnarsson A, Stefansson E. Laser treatment and the mechanism of edema reduction in branch retinal vein occlusion. Invest Ophthalmol Vis Sci. 2000;41:877–9.

    CAS  PubMed  Google Scholar 

  77. Ogata N, Tombran-Tink J, Jo N, et al. Upregulation of pigment epithelium-derived factor after laser photocoagulation. Am J Ophthalmol. 2001;132:427–9.

    Article  CAS  PubMed  Google Scholar 

  78. Diabetic Retinopathy Clinical Research Network. Comparison of the modified early treatment diabetic retinopathy study and mild macular grid laser photocoagulation strategies for diabetic macular edema. Arch Ophthalmol. 2007;125:469–80.

    Article  PubMed Central  Google Scholar 

  79. Bandello F, Polito A, Del Borrello M, et al. ‘Light’ versus ‘classic’ laser treatment for clinically significant diabetic macular oedema. Br J Ophthalmol. 2005;89:864–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Desmettre TJ, Mordon SR, Buzawa DM, et al. Micropulse and continuous wave diode retinal photocoagulation: visible and subvisible lesion parameters. Br J Ophthalmol. 2006;90:709–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vujosevic S, Martini F, Longhin E, Convento E, Cavarzeran F, Midena E. Subthreshold micropulse yellow laser versus subthreshold micropulse infrared laser in center-involving diabetic macular edema: Morphologic and Functional Safety. Retina. 2015;35(8):1594–603.

    Article  PubMed  Google Scholar 

  82. Chen G, Tzekov R, Li W, Jiang F, Mao S, Tong Y. Subthreshold micropulse diode laser versus conventional laser photocoagulation for diabetic macular edema: a meta-analysis of randomized controlled trials. Retina. 2016;36(11):2059–65.

    Article  CAS  PubMed  Google Scholar 

  83. Kumar V, Ghosh B, Mehta DK, et al. Functional outcome of subthreshold versus threshold diode laser photocoagulation in diabetic macular oedema. Eye. 2010;24:1459–65.

    Article  CAS  PubMed  Google Scholar 

  84. Figueira J, Khan J, Nunes S, et al. Prospective randomized controlled trial comparing subthreshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema. Br J Ophthalmol. 2008;93:1341–4.

    Article  PubMed  Google Scholar 

  85. Wu Y, Ai P, Ai Z, Xu G. Subthreshold diode micropulse laser versus conventional laser photocoagulation monotherapy or combined with anti-VEGF therapy for diabetic macular edema: a Bayesian network meta-analysis. Biomed Pharmacother. 2018;97:293–9.

    Article  CAS  PubMed  Google Scholar 

  86. Elhamid AHA. Combined intravitreal dexamethasone implant and micropulse yellow laser for treatment of anti-VEGF resistant diabetic macular edema. Open Ophthalmol J. 2017;11:164–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Blumenkranz MS, Yellachich D, Andersen DE, et al. Semiautomated patterned scanning laser for retinal photocoagulation. Retina. 2006;26:370–6.

    Article  PubMed  Google Scholar 

  88. Paulus YM, Jain A, Gariano RF, et al. Healing of retinal photocoagulation lesions. Invest Ophthalmol Vis Sci. 2008;49:5540–5.

    Article  PubMed  Google Scholar 

  89. Sheth S, Lanzetta P, Veritti D, et al. Experience with the pascal® photocoagulator: an analysis of over 1,200 laser procedures with regard to parameter refinement. Indian J Ophthalmol. 2011;59:87–91.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jain A, Collen J, Kaines A, et al. Short-duration focal pattern grid macular photocoagulation for diabetic macular edema: four-month outcomes. Retina. 2010;30:1622–6.

    Article  PubMed  Google Scholar 

  91. Inagaki K, Ohkoshi K, Ohde S. Spectral-domain optical coherence tomography imaging of retinal changes after conventional multicolor laser, subthreshold micropulse diode laser, or pattern scanning laser therapy in Japanese with macular edema. Retina. 2012;32:1592–600.

    Article  PubMed  Google Scholar 

  92. Mahgoub MM, Macky TA. The effect of laser panretinal photocoagulation on diabetic macular edema using the Pascal® photocoagulator versus the conventional Argon laser photocoagulator. Ophthalmologica. 2016;235(3):137–40.

    Article  CAS  PubMed  Google Scholar 

  93. Kozak I, Oster SF, Cortes MA, et al. Clinical evaluation and treatment accuracy in diabetic macular edema using navigated laser photocoagulator NAVILAS. Ophthalmology. 2011;118:1119–24.

    Article  PubMed  Google Scholar 

  94. Kernt M, Cheuteu RE, Cserhati S, et al. Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (Navilas). Clin Ophthalmol. 2012;6:289–96.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ober MD, Kernt M, Cortes MA, Kozak I. Time required for navigated macular laser photocoagulation treatment with the Navilas®. Graefes Arch Clin Exp Ophthalmol. 2013;251:1049–53.

    Article  CAS  PubMed  Google Scholar 

  96. Jung JJ, Gallego-Pinazo R, Lleó-Pérez A, Huz JI. Barbazetto IA. NAVILAS laser system focal laser treatment for diabetic macular edema - one year results of a case series. Open Ophthalmol J. 2013;7:48–53.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Patel RD, Messner LV, Teitelbaum B, Michel KA, Hariprasad SM. Characterization of ischemic index using ultra-widefield fluorescein angiography in patients with focal and diffuse recalcitrant diabetic macular edema. Am J Ophthalmol. 2013;155(6):1038–44.

    Article  PubMed  Google Scholar 

  98. Battaglia Parodi M, Bandello F. Is laser still important in diabetic macular edema as primary or deferral therapy? Dev Ophthalmol. 2017;60:125–30.

    Article  PubMed  Google Scholar 

  99. Bamforth SD, Lightman S, Greenwood J. The effect of TNF- alpha and IL-6 on the permeability of the rat blood-retinal barrier in vivo. Acta Neuropathol. 1996;91:624–32.

    Article  CAS  PubMed  Google Scholar 

  100. Funatsu H, Yamashita H, Noma H, et al. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol. 2002;133:70–7.

    Article  CAS  PubMed  Google Scholar 

  101. Sutter FK, Simpson JM, Gillies MC. Intravitreal triamcinolone for diabetic macular edema that persists after laser treatment: three-month efficacy and safety results of a prospective, randomized, double-masked, placebo controlled clinical trial. Ophthalmology. 2004;111:2044–9.

    Article  PubMed  Google Scholar 

  102. Massin P, Audren F, Haouchine B, et al. Intravitreal triamcinolone acetonide for diabetic diffuse macular edema: preliminary results of a prospective controlled trial. Ophthalmology. 2004;111:218–24.

    Article  PubMed  Google Scholar 

  103. Avitabile T, Longo A, Reibaldi A. Intravitreal triamcinolone compared with macular laser grid photocoagulation for the treatment of cystoid macular edema. Am J Ophthalmol. 2005;140:695–702.

    Article  CAS  PubMed  Google Scholar 

  104. Audren F, Erginay A, Haouchine B, et al. Intravitreal triamcinolone acetonide for diffuse diabetic macular oedema: 6-month results of a prospective controlled trial. Acta Ophthalmol Scand. 2006;84:624–30.

    Article  CAS  PubMed  Google Scholar 

  105. Jonas JB, Kampperter BA, Harder B, et al. Intravitreal triamcinolone acetonide for diabetic macular edema: a prospective, randomized study. J Ocul Pharmacol Ther. 2006;22:200–7.

    Article  CAS  PubMed  Google Scholar 

  106. Gillies MC, Sutter FK, Simpson JM, et al. Intravitreal triamcinolone for refractory diabetic macular edema two-year results of a double-masked, placebo-controlled, randomized clinical trial. Ophthalmology. 2006;113:1533–8.

    Article  PubMed  Google Scholar 

  107. Yilmaz T, Weaver CD, Gallagher MJ, et al. Intravitreal triamcinolone acetonide injection for treatment of refractory diabetic macular edema: a systematic review. Ophthalmology. 2009;116:902–11.

    Article  PubMed  Google Scholar 

  108. Gillies MC, Simpson JM, Gaston C, et al. Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema. Ophthalmology. 2009;116:2182–7.

    Article  PubMed  Google Scholar 

  109. Diabetic Retinopathy Clinical Research Network. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology. 2008;115:1447–9.

    Article  Google Scholar 

  110. Diabetic Retinopathy Clinical Research Network. Three-year follow-up of a randomized clinical trial comparing focal/grid laser photocoagulation and intravitreal triamcinolone for diabetic macular edema. Arch Ophthalmol. 2009;127:245–51.

    Article  PubMed Central  Google Scholar 

  111. Bressler NM, Edwards AR, Beck RW, et al. Exploratory analysis of diabetic retinopathy progression through 3 years in a randomized clinical trial that compares intravitreal triamcinolone acetonide with focal/grid photocoagulation. Arch Ophthalmol. 2009;127:1566–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Diabetic Retinopathy Clinical Research Network. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010;117:1064–77.

    Article  Google Scholar 

  113. Diabetic Retinopathy Clinical Research Network. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2011;118:609–14.

    Article  Google Scholar 

  114. Haller JA, Dugel P, Weinberg DV, et al. Evaluation of safety and performance of an applicator for a novel intravitreal dexamethasone drug delivery system for the treatment of macular edema. Retina. 2009;29:46–51.

    Article  PubMed  Google Scholar 

  115. Kuppermann BD, Blumenkranz MS, Haller JA, Dexamethasone DDS Phase II Study Group, et al. Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Arch Ophthalmol. 2007;125:309–17.

    Article  CAS  PubMed  Google Scholar 

  116. Haller JA, Kuppermann BD, Blumenkranz MS, et al. Randomized controlled trial of an intravitreous dexamethasone drug delivery system in patients with diabetic macular edema. Arch Ophthalmol. 2010;128:289–96.

    Article  CAS  PubMed  Google Scholar 

  117. Boyer DS, Yoon YH, Belfort R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121(10):1904–14.

    Article  PubMed  Google Scholar 

  118. Augustin AJ, Kuppermann BD, Lanzetta P, et al. Dexamethasone intravitreal implant in previously treated patients with diabetic macular edema: subgroup analysis of the MEAD study. BMC Ophthalmol. 2015;15:150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Danis RP, Sadda S, Li XY, Cui H, Hashad Y, Whitcup SM. Anatomical effects of dexamethasone intravitreal implant in diabetic macular oedema: a pooled analysis of 3-year phase III trials. Br J Ophthalmol. 2016;100(6):796–801.

    Article  PubMed  Google Scholar 

  120. Querques L, Parravano M, Sacconi R, Rabiolo A, Bandello F, Querques G. Ischemic index changes in diabetic retinopathy after intravitreal dexamethasone implant using ultra-widefield fluorescein angiography: a pilot study. Acta Diabetol. 2017;54(8):769–73.

    Article  CAS  PubMed  Google Scholar 

  121. Zucchiatti I, Lattanzio R, Querques G, et al. Intravitreal dexamethasone implant in patients with persistent diabetic macular edema. Ophthalmologica. 2012;228:117–22.

    Article  CAS  PubMed  Google Scholar 

  122. Malclès A, Dot C, Voirin N, et al. Safety of intravitreal dexamethasone implant (Ozurdex): The SAFODEX study. Incidence and risk factors of ocular hypertension. Retina. 2017;37(7):1352–9.

    Article  PubMed  CAS  Google Scholar 

  123. Malclès A, Dot C, Voirin N, et al. Real-life study in diabetic macular edema treated with dexamethasone implant: The RELDEX study. Retina. 2017;37(4):753–60.

    Article  PubMed  CAS  Google Scholar 

  124. Sarao V, Veritti D, Furino C, et al. Dexamethasone implant with fixed or individualized regimen in the treatment of diabetic macular oedema: six-month outcomes of the UDBASA study. Acta Ophthalmol. 2017;95(4):e255–60.

    Article  CAS  PubMed  Google Scholar 

  125. Panozzo G, Gusson E, Panozzo G, Dalla Mura G. Dexamethasone intravitreal implant for diabetic macular edema: indications for a PRN regimen of treatment. Eur J Ophthalmol. 2015;25(4):347–51.

    Article  PubMed  Google Scholar 

  126. Callanan DG, Loewenstein A, Patel SS, et al. A multicenter, 12-month randomized study comparing dexamethasone intravitreal implant with ranibizumab in patients with diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2017;255(3):463–73.

    Article  CAS  PubMed  Google Scholar 

  127. Gillies MC, Lim LL, Campain A, et al. BEVORDEX - a multicentre randomized clinical trial of intravitreal bevacizumab versus intravitreal dexamethasone for persistent diabetic macular oedema. Invest Ophthalmol Vis Sci. 2014;55(13):5053.

    Google Scholar 

  128. Fraser-Bell S, Lim LL, Campain A, et al. Bevacizumab or dexamethasone implants for DME: 2-year results (the BEVORDEX study). Ophthalmology. 2016;123(6):1399–401.

    Article  PubMed  Google Scholar 

  129. Mehta H, Fraser-Bell S, Yeung A, et al. Efficacy of dexamethasone versus bevacizumab on regression of hard exudates in diabetic maculopathy: data from the BEVORDEX randomised clinical trial. Br J Ophthalmol. 2016;100(7):1000–4.

    Article  PubMed  Google Scholar 

  130. Aroney C, Fraser-Bell S, Lamoureux EL, Gillies MC, Lim LL, Fenwick EK. Vision-related quality of life outcomes in the BEVORDEX Study: a clinical trial comparing ozurdex sustained release dexamethasone intravitreal implant and bevacizumab treatment for diabetic macular edema. Invest Ophthalmol Vis Sci. 2016;57(13):5541–6.

    Article  CAS  PubMed  Google Scholar 

  131. Cicinelli MV, Cavalleri M, Querques L, Rabiolo A, Bandello F, Querques G. Early response to ranibizumab predictive of functional outcome after dexamethasone for unresponsive diabetic macular oedema. Br J Ophthalmol. 2017;101(12):1689–93.

    Article  PubMed  Google Scholar 

  132. Agarwal A, Gupta V, Ram J, Gupta A. Dexamethasone intravitreal implant during phacoemulsification. Ophthalmology. 2013;120(1):211, 211.e1–5.

    Article  PubMed  Google Scholar 

  133. Panozzo GA, Gusson E, Panozzo G, Dalla Mura G. Dexamethasone intravitreal implant at the time of cataract surgery in eyes with diabetic macular edema. Eur J Ophthalmol. 2017;27(4):433–7.

    Article  PubMed  Google Scholar 

  134. Sacconi R, Battaglia Parodi M, Casati S, Lattanzio R, Marchini G, Bandello F. Dexamethasone implants in diabetic macular edema patients with high visual acuity. Ophthalmic Res. 2017;58(3):125–30.

    Article  CAS  PubMed  Google Scholar 

  135. Khan Z, Kuriakose RK, Khan M, Chin EK, Almeida DR. Efficacy of the intravitreal sustained-release dexamethasone implant for diabetic macular edema refractory to anti-vascular endothelial growth factor therapy: meta-analysis and clinical implications. Ophthalmic Surg Lasers Imaging Retina. 2017;48(2):160–6.

    Article  PubMed  Google Scholar 

  136. Boyer DS, Faber D, Gupta S, Ozurdex Champlain Study Group, et al. Dexamethasone intravitreal implant for treatment of diabetic macular edema in vitrectomized patients. Retina. 2011;31:915–23.

    Article  CAS  PubMed  Google Scholar 

  137. Campochiaro PA, Hafiz G, Shah SM, et al. Sustained ocular delivery of fluocinolone acetonide by an intravitreal insert. Ophthalmology. 2010;117:1393–9.

    Article  PubMed  Google Scholar 

  138. Campochiaro PA, Brown DM, Pearson A, et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology. 2011;118:626–35.

    Article  PubMed  Google Scholar 

  139. Mohammad DA, Sweet BV, Elner SG. Retisert: is the new advance in treatment of uveitis a good one? Ann Pharmacother. 2007;41(3):449–54.

    Article  CAS  PubMed  Google Scholar 

  140. Jaffe GJ, Martin D, Callanan D, Fluocinolone Acetonide Uveitis Study Group, et al. Fluocinolone acetonide implant (Retisert) for non infectious posterior uveitis: thirty-four-week results of a multicenter randomized clinical study. Ophthalmology. 2006;113:1020–7.

    Article  PubMed  Google Scholar 

  141. Pearson PA, Comstock TL, Ip M, et al. Fluocinolone acetonide intravitreal implant for diabetic macular edema: a 3-year multicenter, randomized, controlled clinical trial. Ophthalmology. 2011;118:1580–7.

    Article  PubMed  Google Scholar 

  142. Campochiaro PA, Brown DM, Pearson A, et al. Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology. 2012;119:2125–32.

    Article  PubMed  Google Scholar 

  143. Massin P, Erginay A, Dupas B, Couturier A, Tadayoni R. Efficacy and safety of sustained-delivery fluocinolone acetonide intravitreal implant in patients with chronic diabetic macular edema insufficiently responsive to available therapies: a real-life study. Clin Ophthalmol. 2016;10:1257–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pessoa B, Coelho J, Correia N, Ferreira N, Beirão M, Meireles A. Fluocinolone acetonide intravitreal implant 190 μg (ILUVIEN®) in vitrectomized versus nonvitrectomized eyes for the treatment of chronic diabetic macular edema. Ophthalmic Res. 2017;59(2):68–75.

    Article  PubMed  CAS  Google Scholar 

  145. Meireles A, Goldsmith C, El-Ghrably I, et al. Efficacy of 0.2 μg/day fluocinolone acetonide implant (ILUVIEN) in eyes with diabetic macular edema and prior vitrectomy. Eye (Lond). 2017;31(5):684–90.

    Article  CAS  Google Scholar 

  146. Holden SE, Currie CJ, Owens DR. Evaluation of the clinical effectiveness in routine practice of fluocinolone acetonide 190 μg intravitreal implant in people with diabetic macular edema. Curr Med Res Opin. 2017;33(suppl 2):5–17.

    Article  CAS  PubMed  Google Scholar 

  147. Bailey C, Chakravarthy U, Lotery A, Menon G, Talks J, Medisoft Audit Group. Real-world experience with 0.2 μg/day fluocinolone acetonide intravitreal implant (ILUVIEN) in the United Kingdom. Eye (Lond). 2017;31(12):1707–15.

    Article  CAS  Google Scholar 

  148. Alfaqawi F, Lip PL, Elsherbiny S, Chavan R, Mitra A, Mushtaq B. Report of 12-months efficacy and safety of intravitreal fluocinolone acetonide implant for the treatment of chronic diabetic macular oedema: a real-world result in the United Kingdom. Eye (Lond). 2017;31(4):650–6.

    Article  CAS  Google Scholar 

  149. El-Ghrably I, Steel DHW, Habib M, Vaideanu-Collins D, Manvikar S, Hillier RJ. Diabetic macular edema outcomes in eyes treated with fluocinolone acetonide 0.2 μg/d intravitreal implant: real-world UK experience. Eur J Ophthalmol. 2017;27(3):357–62.

    Article  PubMed  Google Scholar 

  150. Figueira J, Henriques J, Amaro M, Rosas V, Alves D, Cunha-Vaz J. A nonrandomized, open-label, multicenter, phase 4 pilot study on the effect and safety of ILUVIEN® in chronic diabetic macular edema patients considered insufficiently responsive to available therapies (RESPOND). Ophthalmic Res. 2017;57(3):166–72.

    Article  PubMed  Google Scholar 

  151. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.

    Article  CAS  PubMed  Google Scholar 

  152. Nguyen QD, Tatlipinar S, Shah SM, et al. Vascular endothelial growth factor is a critical stimulus for diabetic macular edema. Am J Ophthalmol. 2006;142:961–9.

    Article  CAS  PubMed  Google Scholar 

  153. Massin P, Bandello F, Garweg JG, et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study. Diabetes Care. 2010;33:2399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012;119:789–801.

    Article  PubMed  Google Scholar 

  155. Brown DM, Nguyen QD, Marcus DM, et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology. 2013;120(10):2013–22.

    Article  PubMed  Google Scholar 

  156. Nguyen QD, Shah SM, Heier JS, et al. Primary end point (six months) results of the ranibizumab for edema of the mAcula in diabetes (READ-2) study. Ophthalmology. 2009;116:2175–81.e1.

    Article  PubMed  Google Scholar 

  157. Nguyen QD, Shah SM, Khwaja AA, et al. Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study. Ophthalmology. 2010;117:2146–51.

    Article  PubMed  Google Scholar 

  158. Do DV, Nguyen QD, Khwaja AA, et al. Ranibizumab for edema of the macula in diabetes study: 3-year outcomes and the need for prolonged frequent treatment. Arch Ophthalmol. 2012;8:1–7.

    Google Scholar 

  159. Mitchell P, Bandello F, Schmidt-Erfurth U, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011;118:615–25.

    Article  PubMed  Google Scholar 

  160. Schmidt-Erfurth U, Lang GE, Holz FG, et al. Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: the RESTORE extension study. Ophthalmology. 2014;121(5):1045–53.

    Article  PubMed  Google Scholar 

  161. Diabetic Retinopathy Clinical Research Network, Elman MJ, Qin H, Aiello LP, et al. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: three-year randomized trial results. Ophthalmology. 2012;119:2312–8.

    Article  Google Scholar 

  162. Bressler SB, Glassman AR, Almukhtar T, et al. Five-year outcomes of ranibizumab with prompt or deferred laser versus laser or triamcinolone plus deferred ranibizumab for diabetic macular edema. Am J Ophthalmol. 2016;164:57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gonzalez VH, Campbell J, Holekamp NM, et al. Early and long-term responses to anti-vascular endothelial growth factor therapy in diabetic macular edema: analysis of protocol I data. Am J Ophthalmol. 2016;172:72–9.

    Article  CAS  PubMed  Google Scholar 

  164. Bressler SB, Ayala AR, Bressler NM, et al. Persistent macular thickening after ranibizumab treatment for diabetic macular edema with vision impairment. JAMA Ophthalmol. 2016;134(3):278–85.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Boyer DS, Nguyen QD, Brown DM, Basu K, Ehrlich JS, RIDE and RISE Research Group. Outcomes with as-needed ranibizumab after initial monthly therapy: long-term outcomes of the phase III RIDE and RISE trials. Ophthalmology. 2015;122(12):2504–13.e1.

    Article  PubMed  Google Scholar 

  166. Wykoff CC, Elman MJ, Regillo CD, Ding B, Lu N, Stoilov I. Predictors of diabetic macular edema treatment frequency with ranibizumab during the open-label extension of the RIDE and RISE trials. Ophthalmology. 2016;123(8):1716–21.

    Article  PubMed  Google Scholar 

  167. Suñer IJ, Bressler NM, Varma R, Dolan CM, Ward J, Turpcu A. Responsiveness of the national eye institute visual function questionnaire-25 to visual acuity gains in patients with diabetic macular edema: evidence from the RIDE and RISE trials. Retina. 2017;37(6):1126–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Maturi RK, Glassman AR, Liu D, et al. Effect of adding dexamethasone to continued ranibizumab treatment in patients with persistent diabetic macular edema: a DRCR network phase 2 randomized clinical trial. JAMA Ophthalmol. 2018;136(1):29–38.

    Article  PubMed  Google Scholar 

  169. Zucchiatti I, Bandello F. Intravitreal ranibizumab in diabetic macular edema: long-term outcomes. Dev Ophthalmol. 2017;60:63–70.

    Article  PubMed  Google Scholar 

  170. Writing Committee for the Diabetic Retinopathy Clinical Research Network, Gross JG, Glassman AR, et al. Panretinal photocoagulation vs. intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA. 2015;314(20):2137–46.

    Article  CAS  Google Scholar 

  171. Diabetic Retinopathy Clinical Research Network, Scott IU, Edwards AR, Beck RW, et al. A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology. 2007;114:1860–7.

    Article  Google Scholar 

  172. Lam DS, Lai TY, Lee VY, et al. Efficacy of 1.25 mg versus 2.5 mg intravitreal bevacizumab for diabetic macular edema: six-month results of a randomized controlled trial. Retina. 2009;29:292–9.

    Article  PubMed  Google Scholar 

  173. Arevalo JF, Sanchez JG, Wu L, Pan-American Collaborative Retina Study Group, et al. Primary intravitreal bevacizumab for diffuse diabetic macular edema: the Pan-American Collaborative Retina Study Group at 24 months. Ophthalmology. 2009;116:1488–97.

    Article  PubMed  Google Scholar 

  174. Michaelides M, Kaines A, Hamilton RD, et al. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: report 2. Ophthalmology. 2010;117:1078.e2–86.e2.

    Google Scholar 

  175. Rajendram R, Fraser-Bell S, Kaines A, et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3. Arch Ophthalmol. 2012;130:972–9.

    Article  CAS  PubMed  Google Scholar 

  176. Soheilian M, Ramezani A, Obudi A, et al. Randomized trial of intravitreal bevacizumab alone or combined with triamcinolone versus macular photocoagulation in diabetic macular edema. Ophthalmology. 2009;116:1142–50.

    Article  PubMed  Google Scholar 

  177. Kook D, Wolf A, Kreutzer T, et al. Long-term effect of intravitreal bevacizumab (avastin) in patients with chronic diffuse diabetic macular edema. Retina. 2008;28:1053–60.

    Article  PubMed  Google Scholar 

  178. Paccola L, Costa RA, Folgosa MS, et al. Intravitreal triamcinolone versus bevacizumab for treatment of refractory diabetic macular oedema (IBEME study). Br J Ophthalmol. 2008;92:76–80.

    Article  CAS  PubMed  Google Scholar 

  179. Shimura M, Nakazawa T, Yasuda K, et al. Comparative therapy evaluation of intravitreal bevacizumab and triamcinolone acetonide on persistent diffuse diabetic macular edema. Am J Ophthalmol. 2008;145:854–61.

    Article  CAS  PubMed  Google Scholar 

  180. Cunningham ET Jr, Adamis AP, Altaweel M, Macugen Diabetic Retinopathy Study Group, et al. A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology. 2005;112:1747–57.

    Article  PubMed  Google Scholar 

  181. Sultan MB, Zhou D, Loftus J, Macugen 1013 Study Group, et al. A phase 2/3, multicenter, randomized, double-masked, 2-year trial of pegaptanib sodium for the treatment of diabetic macular edema. Ophthalmology. 2011;118:1107–18.

    Article  PubMed  Google Scholar 

  182. Loftus JV, Sultan MB, Pleil AM, Macugen 1013 Study Group, et al. Changes in vision- and health-related quality of life in patients with diabetic macular edema treated with pegaptanib sodium or sham. Invest Ophthalmol Vis Sci. 2011;52:7498–505.

    Article  CAS  PubMed  Google Scholar 

  183. Do DV, Schmidt-Erfurth U, Gonzalez VH, et al. The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema. Ophthalmology. 2011;118:1819–26.

    Article  PubMed  Google Scholar 

  184. Heier JS, Korobelnik JF, Brown DM, et al. Intravitreal aflibercept for diabetic macular edema: 148-week results from the VISTA and VIVID studies. Ophthalmology. 2016;123(11):2376–85.

    Article  PubMed  Google Scholar 

  185. Ziemssen F, Schlottman PG, Lim JI, Agostini H, Lang GE, Bandello F. Initiation of intravitreal aflibercept injection treatment in patients with diabetic macular edema: a review of VIVID-DME and VISTA-DME data. Int J Retina. 2016; Vitreous;11(2):16.

    Article  Google Scholar 

  186. Wykoff CC, Marcus DM, Midena E, et al. Intravitreal aflibercept injection in eyes with substantial vision loss after laser photocoagulation for diabetic macular edema: subanalysis of the VISTA and VIVID randomized clinical trials. JAMA Ophthalmol. 2016. [Epub ahead of print].

    Google Scholar 

  187. Dhoot DS, Baker K, Saroj N, et al. Baseline factors affecting changes in diabetic retinopathy severity scale score after intravitreal aflibercept or laser for diabetic macular edema: post hoc analyses from VISTA and VIVID. Ophthalmology. 2018;125(1):51–6.

    Article  PubMed  Google Scholar 

  188. Wykoff CC, Le RT, Khurana RN, et al. Outcomes with as-needed aflibercept and macular laser following the phase III VISTA DME trial: ENDURANCE 12-month extension study. Am J Ophthalmol. 2017;173:56–63.

    Article  PubMed  Google Scholar 

  189. Wykoff CC, Ou WC, Khurana RN, et al. Long-term outcomes with as-needed aflibercept in diabetic macular oedema: 2-year outcomes of the ENDURANCE extension study. Br J Ophthalmol. 2018;102(5):631–6. pii: bjophthalmol-2017-310941.

    Article  PubMed  Google Scholar 

  190. Cai S, Bressler NM. Aflibercept, bevacizumab or ranibizumab for diabetic macular oedema: recent clinically relevant findings from DRCR.net Protocol T. Curr Opin Ophthalmol. 2017;28(6):636–43.

    Article  PubMed  Google Scholar 

  191. Bressler NM, Beaulieu WT, Glassman AR, et al. Persistent macular thickening following intravitreous aflibercept, bevacizumab, or ranibizumab for central-involved diabetic macular edema with vision impairment: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol. 2018;136(3):257–69.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Virgili G, Parravano M, Evans JR, Gordon I, Lucenteforte E. Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis. Cochrane Database Syst Rev. 2017;6:CD007419.

    PubMed  Google Scholar 

  193. Lewis H, Abrams GW, Blumenkranz MS, et al. Vitrectomy for diabetic macular traction and edema associated with posterior hyaloidal traction. Ophthalmology. 1992;99:753–9.

    Article  CAS  PubMed  Google Scholar 

  194. Harbour JW, Smiddy WE, Flynn HW Jr, et al. Vitrectomy for diabetic macular edema associated with a thickened and taut posterior hyaloid membrane. Am J Ophthalmol. 1996;121:405–13.

    Article  CAS  PubMed  Google Scholar 

  195. Hikichi T, Fujio N, Akiba J, et al. Association between the short-term natural history of diabetic macular edema and the vitreomacular relationship in type II diabetes mellitus. Ophthalmology. 1997;104:473–8.

    Article  CAS  PubMed  Google Scholar 

  196. Ikeda T, Sato K, Katano T, Hayashi Y. Improved visual acuity following pars plana vitrectomy for diabetic cystoid macular edema and detached posterior hyaloid. Retina. 2000;20:220–2.

    Article  CAS  PubMed  Google Scholar 

  197. Hartley KL, Smiddy WE, Flynn HW Jr, et al. Pars plana vitrectomy with internal limiting membrane peeling for diabetic macular edema. Retina. 2008;28:410–9.

    Article  PubMed  Google Scholar 

  198. Pendergast SD, Hassan TS, Williams GA, et al. Vitrectomy for diffuse diabetic macular edema associated with a taut premacular posterior hyaloid. Am J Ophthalmol. 2000;130:178–86.

    Article  CAS  PubMed  Google Scholar 

  199. Stefánsson E, Novack RL, Hatchell DL. Vitrectomy prevents hypoxia in branch retinal vein occlusion. Invest Ophthalmol Vis Sci. 1990;31:284–9.

    PubMed  Google Scholar 

  200. Stefánsson E. Therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand. 2001;79:435–40.

    Article  PubMed  Google Scholar 

  201. Gandorfer A, Messmer EM, Ulbig MW, et al. Resolution of diabetic macular edema after surgical removal of the posterior hyaloid and the inner limiting membrane. Retina. 2000;20:126–33.

    Article  CAS  PubMed  Google Scholar 

  202. Bahadir M, Ertan A, Mertoglu O. Visual acuity comparison of vitrectomy with and without internal limiting membrane removal in the treatment of diabetic macular edema. Int Ophthalmol. 2005;26:3–8.

    Article  PubMed  Google Scholar 

  203. Recchia FM, Ruby AJ, Carvalho Recchia CA. Pars plana vitrectomy with removal of the internal limiting membrane in the treatment of persistent diabetic macular edema. Am J Ophthalmol. 2005;139:447–54.

    Article  PubMed  Google Scholar 

  204. Rosenblatt BJ, Shab GK, Sharma S, Bakal J. Pars plana vitrectomy with internal limiting membranectomy for refractory diabetic macular edema without a taut posterior hyaloid. Graefes Arch Clin Exp Ophthalmol. 2005;243:20–5.

    Article  PubMed  Google Scholar 

  205. Diabetic Retinopathy Clinical Research Network Writing Committee, Haller JA, Qin H, Apte RS, et al. Vitrectomy outcomes in eyes with diabetic macular edema and vitreomacular traction. Ophthalmology. 2010;117:1087–1093.e3.

    Article  Google Scholar 

  206. Rinaldi M, dell’Omo R, Morescalchi F, et al. ILM peeling in nontractional diabetic macular edema: review and metanalysis. Int Ophthalmol. 2017. [Epub ahead of print].

    Google Scholar 

  207. Ulrich JN. Pars Plana Vitrectomy with Internal Limiting Membrane Peeling for Nontractional Diabetic Macular Edema. Open Ophthalmol J. 2017;11:5–10.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Ghassemi F, Bazvand F, Roohipoor R, Yaseri M, Hassanpoor N, Zarei M. Outcomes of vitrectomy, membranectomy and internal limiting membrane peeling in patients with refractory diabetic macular edema and non-tractional epiretinal membrane. J Curr Ophthalmol. 2016;28(4):199–205.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Bonnin S, Sandali O, Bonnel S, Monin C, El Sanharawi M. Vitrectomy with internal limiting membrane peeling for tractional and nontractional diabetic macular edema: Long-term Results of a Comparative Study. Retina. 2015;35(5):921–8.

    Article  PubMed  Google Scholar 

  210. Kogo J, Shiono A, Sasaki H, et al. Foveal microstructure analysis in eyes with diabetic macular edema treated with vitrectomy. Adv Ther. 2017;34(9):2139–49.

    Article  PubMed  Google Scholar 

  211. Gandorfer A. Enzymatic vitreous disruption. Eye. 2008;22:1273–7.

    Article  CAS  PubMed  Google Scholar 

  212. Kuppermann BD, Thomas EL, De Smet MD, et al. Pooled efficacy results from two multinational randomized controlled clinical trials of a single intravitreous injection of highly purified ovine hyaluronidase (Vitrase) for the management of vitreous hemorrhage. Am J Ophthalmol. 2005;140:573–84.

    Article  CAS  PubMed  Google Scholar 

  213. Kuppermann BD, De Smet MD, Grillone LR. Safety results of two phase III trials of an intravitreous injection of highly purified ovine hyaluronidase (Vitrase) for the management of vitreous hemorrhage. Am J Ophthalmol. 2005;140:585–97.

    Article  CAS  PubMed  Google Scholar 

  214. Azzolini C, D’Angelo A, Maestranzi G, et al. Intrasurgical plasmin enzyme in diabetic macular edema. Am J Ophthalmol. 2004;138:560–6.

    Article  CAS  PubMed  Google Scholar 

  215. Codenotti M, Maestranzi G, De Benedetto U, et al. Vitreomacular traction syndrome: a comparison of treatment with intravitreal plasmin enzyme vs. spontaneous vitreous separation without treatment. Eye. 2013;27:22–7.

    Article  CAS  PubMed  Google Scholar 

  216. Rizzo S, Bacherini D. Enzymatic vitreolysis for vitreomacular traction in diabetic retinopathy. Dev Ophthalmol. 2017;60:160–4.

    Article  PubMed  Google Scholar 

  217. Haller JA, Stalmans P, Benz MS, et al. Efficacy of intravitreal ocriplasmin for treatment of vitreomacular adhesion: subgroup analyses from two randomized trials. Ophthalmology. 2015;122(1):117–22.

    Article  PubMed  Google Scholar 

  218. ThromboGenics: a multicenter study to compare multiple doses of intravitreal microplasmin versus sham injection for treatment of patients with diabetic macular edema (DME) (MIVI-II). http://clinicaltrials.gov/show/NCT00412451. NLM identifier: NCT00412451

  219. Bandello F, Cunha-Vaz J, Chong NV, et al. New approaches for the treatment of diabetic macular oedema: recommendations by an expert panel. Eye (Lond). 2012;26:485–93.

    Article  CAS  Google Scholar 

  220. Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for the management of diabetic macular edema by the european society of retina specialists (EURETINA). Ophthalmologica. 2017;237(4):185–222.

    Article  PubMed  Google Scholar 

  221. Bressler SB, Qin H, Beck RW, et al. Factors associated with changes in visual acuity and central subfield thickness at 1 year after treatment for diabetic macular edema with ranibizumab. Arch Ophthalmol. 2012;130:1153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Mohamed S, Leung GM, Chan CK, et al. Factors associated with variability in response of diabetic macular oedema after intravitreal triamcinolone. Clin Experiment Ophthalmol. 2009;37:602–8.

    Article  PubMed  Google Scholar 

  223. Yamada Y, Suzuma K, Kumagami T, et al. Systemic factors influence the prognosis of diabetic macular edema after pars plana vitrectomy with internal limiting membrane peeling. Ophthalmologica. 2012;229:142–6.

    Article  PubMed  Google Scholar 

  224. Aiello LP, Edwards AR, Beck RW, et al. Factors associated with improvement and worsening of visual acuity 2 years after focal/grid photocoagulation for diabetic macular edema. Ophthalmology. 2010;117:946–53.

    Article  PubMed  Google Scholar 

  225. Kim YM, Lee SY, Koh HJ. Prediction of postoperative visual outcome after pars plana vitrectomy based on preoperative multifocal electroretinography in eyes with diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2010;248:1387–93.

    Article  PubMed  Google Scholar 

  226. Shin HJ, Lee SH, Chung H, Kim HC. Association between photoreceptor integrity and visual outcome in diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2012;250:61–70.

    Article  PubMed  Google Scholar 

  227. Chhablani JK, Kim JS, Cheng L, et al. External limiting membrane as a predictor of visual improvement in diabetic macular edema after pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol. 2012;250:1415–20.

    Article  PubMed  Google Scholar 

  228. Yanyali A, Bozkurt KT, Macin A, et al. Quantitative assessment of photoreceptor layer in eyes with resolved edema after pars plana vitrectomy with internal limiting membrane removal for diabetic macular edema. Ophthalmologica. 2011;226:57–63.

    Article  PubMed  Google Scholar 

  229. Shimura M, Yasuda K, Yasuda M, et al. Visual outcome after intravitreal bevacizumab depends on the optical coherence tomographic patterns of patients with diffuse diabetic macular edema. Retina. 2013;33:740–7.

    Article  CAS  PubMed  Google Scholar 

  230. Singh RP, Habbu K, Ehlers JP, Lansang MC, Hill L, Stoilov I. The impact of systemic factors on clinical response to ranibizumab for diabetic macular edema. Ophthalmology. 2016;123(7):1581–7.

    Article  PubMed  Google Scholar 

  231. Itoh Y, Petkovsek D, Kaiser PK, Singh RP, Ehlers JP. Optical coherence tomography features in diabetic macular edema and the impact on anti-VEGF response. Ophthalmic Surg Lasers Imaging Retina. 2016;47(10):908–13.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Vujosevic S, Torresin T, Bini S, et al. Imaging retinal inflammatory biomarkers after intravitreal steroid and anti-VEGF treatment in diabetic macular oedema. Acta Ophthalmol. 2017;95(5):464–71.

    Article  CAS  PubMed  Google Scholar 

  233. Gerendas BS, Prager S, Deak G, et al. Predictive imaging biomarkers relevant for functional and anatomical outcomes during ranibizumab therapy of diabetic macular oedema. Br J Ophthalmol. 2018;102(2):195–203.

    Article  PubMed  Google Scholar 

  234. Manousaridis K, Talks J. Macular ischaemia: a contraindication for anti-VEGF treatment in retinal vascular disease? Br J Ophthalmol. 2012;96:179–84.

    Article  PubMed  Google Scholar 

  235. Goel N, Kumar V, Ghosh B. Ischemic maculopathy following intravitreal bevacizumab for refractory diabetic macular edema. Int Ophthalmol. 2011;31:39–42.

    Article  PubMed  Google Scholar 

  236. Nakamura Y, Takeda N, Tatsumi T. Macular ischemia following intravitreal bevacizumab therapy for diabetic macular edema. Nihon Ganka Gakkai Zasshi. 2012;116:108–13.

    PubMed  Google Scholar 

  237. Battaglia Parodi M, Iacono P, Cascavilla ML, et al. Sequential anterior ischemic optic neuropathy and central retinal artery and vein occlusion after ranibizumab for diabetic macular edema. Eur J Ophthalmol. 2010;20:1076–8.

    Article  PubMed  Google Scholar 

  238. Fan W, Wang K, Ghasemi Falavarjani K, et al. Distribution of nonperfusion area on ultra-widefield fluorescein angiography in eyes with diabetic macular edema: DAVE study. Am J Ophthalmol. 2017;180:110–6.

    Article  PubMed  Google Scholar 

  239. Singerman LJ. Intravitreal bevasiranib in exudative age-related macular degeneration or diabetic macular edema. In: 25th Annual Meeting of the American Society of Retina Specialists, Indian Wells, 2007.

    Google Scholar 

  240. Safety and efficacy study of small interfering RNA molecule (Cand5) to treat diabetic macular edema [ClinicalTrials.gov identifier NCT00306904]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov.

  241. Nguyen QD, Schachar RA, Nduaka CI, et al. Dose-ranging evaluation of intravitreal siRNA PF-04523655 for diabetic macular edema (the DEGAS study). Invest Ophthalmol Vis Sci. 2012;53:7666–74.

    Article  PubMed  CAS  Google Scholar 

  242. PF-04523655 dose escalation study, and evaluation of PF-04523655 with/without ranibizumab in diabetic macular edema (DME) (MATISSE) [ClinicalTrials.gov identifier NCT01445899]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov.

  243. Krishnadev N, Forooghian F, Cukras C, et al. Subconjunctival sirolimus in the treatment of diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2011;249:1627–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Dugel PU, Blumenkranz MS, Haller JA, et al. A randomized, dose-escalation study of subconjunctival and intravitreal injections of sirolimus in patients with diabetic macular edema. Ophthalmology. 2012;119:124–31.

    Article  PubMed  Google Scholar 

  245. Wu L, Hernandez-Bogantes E, Roca JA, et al. intravitreal tumor necrosis factor inhibitors in the treatment of refractory diabetic macular edema: a pilot study from the Pan-American Collaborative Retina Study Group. Retina. 2011;31:298–303.

    Article  CAS  PubMed  Google Scholar 

  246. Owen ME, Beare NA, Pearce IA, Mewar D. Intravitreal tumor necrosis factor inhibitors in the treatment of refractory diabetic macular edema. Retina. 2012;32:2179–80.

    Article  PubMed  Google Scholar 

  247. Tsilimbaris MK, Panagiotoglou TD, Charisis SK, et al. The use of intravitreal etanercept in diabetic macular oedema. Semin Ophthalmol. 2007;22:75–9.

    Article  PubMed  Google Scholar 

  248. Hariprasad SM, Callanan D, Gainey S. Cystoid and diabetic macular edema treated with nepafenac 0.1 %. J Ocul Pharmacol Ther. 2007;23:585–90.

    Article  CAS  PubMed  Google Scholar 

  249. Callanan D, Williams P. Topical nepafenac in the treatment of diabetic macular edema. Clin Ophthalmol. 2008;2:689–92.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Singh R, Alpern L, Jaffe GJ, et al. Evaluation of nepafenac in prevention of macular edema following cataract surgery in patients with diabetic retinopathy. Clin Ophthalmol. 2012;6:1259–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Pollack A, Staurenghi G, Sager D, Mukesh B, Reiser H, Singh RP. Prospective randomised clinical trial to evaluate the safety and efficacy of nepafenac 0.1% treatment for the prevention of macular oedema associated with cataract surgery in patients with diabetic retinopathy. Br J Ophthalmol. 2017;101(4):423–7.

    Article  PubMed  Google Scholar 

  252. Evliyaoğlu F, Akpolat Ç, Kurt MM, Çekiç O, Nuri Elçioğlu M. Retinal vascular caliber changes after topical nepafenac treatment for diabetic macular edema. Curr Eye Res. 2018;43(3):357–61.

    Article  PubMed  CAS  Google Scholar 

  253. Cable M. Comparison of bromfenac 0.09% QD to nepafenac 0.1% TID after cataract surgery: pilot evaluation of visual acuity, macular volume, and retinal thickness at a single site. Clin Ophthalmol. 2012;6:997–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Elbendary AM, Shahin MM. Intravitreal diclofenac versus intravitreal triamcinolone acetonide in the treatment of diabetic macular edema. Retina. 2011;31:2058–64.

    Article  CAS  PubMed  Google Scholar 

  255. Maldonado RM, Vianna RN, Cardoso GP. Intravitreal injection of commercially available ketorolac tromethamine in eyes with diabetic macular edema refractory to laser photocoagulation. Curr Eye Res. 2011;36:768–73.

    Article  CAS  PubMed  Google Scholar 

  256. Tanito M, Hara K, Takai Y. Topical dexamethasone-cyclodextrin microparticle eye drops for diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52:7944–8.

    Article  CAS  PubMed  Google Scholar 

  257. Cukras CA, Petrou P, Chew EY, et al. Oral minocycline for the treatment of diabetic macular edema (DME): results of a phase I/II clinical study. Invest Ophthalmol Vis Sci. 2012;53:3865–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Thakur A, Scheinman RI, Rao VR, Kompella UB. Pazopanib, a multitargeted tyrosine kinase inhibitor, reduces diabetic retinal vascular leukostasis and leakage. Microvasc Res. 2011;82:346–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Bolinger MT, Antonetti DA. Moving past anti-VEGF: novel therapies for treating diabetic retinopathy. Int J Mol Sci. 2016;17(9):1498.

    Article  PubMed Central  CAS  Google Scholar 

  260. Das A, McGuire PG, Monickaraj F. Novel pharmacotherapies in diabetic retinopathy: Current status and what’s in the horizon? Indian J Ophthalmol. 2016;64(1):4–13.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosangela Lattanzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandello, F., Lattanzio, R., Zucchiatti, I., Arrigo, A., Battista, M., Cicinelli, M.V. (2019). Diabetic Macular Edema. In: Bandello, F., Zarbin, M., Lattanzio, R., Zucchiatti, I. (eds) Clinical Strategies in the Management of Diabetic Retinopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-96157-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96157-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96156-9

  • Online ISBN: 978-3-319-96157-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics