Skip to main content

Advertisement

Log in

Cross-ownership and managerial delegation under vertical product differentiation

  • Published:
Journal of Economics Aims and scope Submit manuscript

Abstract

We construct a vertical product differentiation duopoly model incorporating managerial delegation and cross-ownership. By exploring the interplay of these factors, we find a U-shaped relationship between endogenous managerial delegation coefficients and cross-ownership. The difference in managerial delegation coefficients between the two firms decreases as the cross-ownership proportion increases. In an ownership structure involving cross-ownership of firms producing different quality products, managerial delegation improves firms’ profits while reducing consumer surplus and social welfare in a vertical product differentiation market. Moreover, cross-ownership intensifies the positive impact of managerial delegation on joint profits and the negative effects on consumer surplus and social welfare. Consequently, regulating cross-ownership among firms in vertically differentiated product markets is an important policy issue for competition law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The idea that a prisoner dilemma emerges in the case of Cournot competition under delegation is widely accepted in the literature on managerial delegation (see, for example, Lambertini 2017). Colombo (2021) shows that considering managerial delegation with two firms producing goods of different qualities, both firms choose to delegate in equilibrium, but a prisoner dilemma is not inevitable in the context of Cournot competition. See recent works on managerial delegation theory and its implication on CSR choice by Fanti et al. (2017) and Buccella and Fanti (2019).

  2. Passive cross-shareholdings, in which a non-controlling minority stake is held in a rival, have received considerable attention from antitrust authorities. It is commonly believed that passive cross-holding may yield competitive harm, although it does not lead to control-decision rights. As pioneered by Reynolds and Snapp (1986), in Cournot competition, the equilibrium with cross-holding will become less competitive, with less aggregate output and higher prices. Much follow-up literature obtains similar results and investigates welfare implications under various market structures (Flath 1992; Reitman 1994; Fanti 2015; Ma et al. 2021; Chen et al. 2023; Li et al. 2022).

  3. When the firm that produces high-quality products holds shares of the low-quality firm, the findings of this paper are essentially valid. See “The scenario where firm 2 holds the shares of firm 1” section in Appendix.

  4. Previous literature has also employed revenue to design manager compensation schemes (for example, Sklivas (1987)). As Vickers (1985) suggests, revenue and sales volume serve to motivate managers similarly at the competitive stage. Both schemes encourage managers to be more aggressive in the market, forcing competitors to reduce their output (Fanti et al. 2017). We chose sales volume to simplify the calculations.

  5. Without considering cross-ownership in the model, Wang (2023) finds that a firm's marginal cost coefficient affects the manager's performance in firms producing products of different quality.

  6. According to Proposition 2, the managerial delegation coefficients of firm 1 and 2 may exhibit other scenarios when cross-ownership increases: 1. firm 1 increases managerial delegation at a slower rate than firm 2; 2. firm 1 increases managerial delegation while firm 2 decreases managerial delegation. All cases imply that the managerial delegation difference between the two firms declines as cross-ownership rises.

  7. As \(\pi _{1} = p_{1} D_{1} - D_{1}^{2} /2,\;\frac{{\partial \pi _{1} }}{{\partial D_{1} }} = p_{1} - D_{1}\).

References

  • Antón M, Ederer F, Giné M, Schmalz M (2023) Common ownership, competition, and top management incentives. J Polit Econ 131(5):1294–1355

    Article  Google Scholar 

  • Azar J (2020) The common ownership trilemma. Univ Chic Law Rev 87(2):263–296

    Google Scholar 

  • Azar J, Schmalz MC, Tecu I (2018) Anticompetitive effects of common ownership. J Finance 73(4):1513–1565

    Article  Google Scholar 

  • Benassi C, Castellani M, Mussoni M (2016) Price equilibrium and willingness to pay in a vertically differentiated mixed duopoly. J Econ Behav Organ 125:86–96

    Article  Google Scholar 

  • Buccella D, Fanti L (2019) Managerial delegation games and corporate social responsibility. Manag Decis Econ 40(6):610–622

    Article  Google Scholar 

  • Chen H (2018) Entry mode, technology transfer and management delegation of FDI. Int Rev Econ Finance 54:232–243

    Article  Google Scholar 

  • Chen L, Matsumura T,  Zeng C (2023) Welfare consequence of common ownership in a vertically related market. J Ind Econ. https://doi.org/10.1111/joie.12380r

    Article  Google Scholar 

  • Choi K, Lee D (2021) Strategic delegation and network externalities under export rivalry market. Manch Sch 90(1):1–19

    Article  Google Scholar 

  • Colombo S (2021) Prisoner dilemma in a vertical duopoly with managerial delegation. Manag Decis Econ 43(5):1476–1481

    Article  Google Scholar 

  • Fanti L (2015) Partial cross-ownership, cost asymmetries, and welfare. Econ Res Int 2015:324507

    Article  Google Scholar 

  • Fanti L, Buccella D (2019) Managerial delegation games and corporate social responsibility. Manag Decis Econ 40(6):610–622

    Article  Google Scholar 

  • Fanti L, Buccella D (2021) Strategic trade policy with interlocking cross-ownership. J Econ 134:147–174

    Article  Google Scholar 

  • Fanti L, Gori L, Sodini M (2017) Managerial delegation theory revisited. Manag Decis Econ 38(4):490–512

    Article  Google Scholar 

  • Farrell J, Shapiro C (1990) Asset ownership and market structure in oligopoly. RAND J Econ 21:275–292

    Article  Google Scholar 

  • Fershtman C, Judd KL (1987) Equilibrium incentives in oligopoly. Am Econ Rev 77:927–940

    Google Scholar 

  • Flath D (1992) Horizontal shareholding interlocks. Manag Decis Econ 13(1):75–77

    Article  Google Scholar 

  • Gilje EP, Gormley TA, Levit D (2020) Who’s paying attention? Measuring common ownership and its impact on managerial incentives. J Financ Econ 137(1):152–178

    Article  Google Scholar 

  • Gilo D, Moshe Y, Spiegel Y (2006) Partial cross ownership and tacit collusion. Rand J Econ 37(1):81–99

    Article  Google Scholar 

  • González-Maestre M, López-Cuñat J (2001) Delegation and mergers in oligopoly. Int J Ind Organ 19(8):1263–1279

    Article  Google Scholar 

  • Heijnen P, Schoonbeek L (2020) Cross-shareholdings and competition in a rent-seeking contest. Int J Ind Organ 71:102625

    Article  Google Scholar 

  • Jansen T, van Lier A, van Witteloostuijn A (2007) A note on strategic delegation: the market share case. Int J Ind Organ 25(3):531–539

    Article  Google Scholar 

  • Jansen T, van Lier A, van Witteloostuijn A (2015) Managerial delegation and welfare effects of cost reductions. J Econ 116(1):1–23

    Article  Google Scholar 

  • Lambertini L (2017) An economic theory of managerial firms: strategic delegation in oligopoly. Routledge, London

    Book  Google Scholar 

  • Lewellen J, Lewellen K (2022) Institutional investors and corporate governance: the incentive to be engaged. J Finance 77(1):213–264

    Article  Google Scholar 

  • Lian X, Zhang K, Wang LFS (2023) Managerial delegation, network externalities and loan commitment. Manch Sch 91(1):37–54

    Article  Google Scholar 

  • Li C, Li Y, Zhang J (2022) Advertising and price competition in the presence of overlapping ownership. J Inst Theor Econ 178(1):43–53

    Article  Google Scholar 

  • Li Y, Zhang J, Zhou Z (2023) Vertical differentiation with overlapping ownership. Econ Lett 222:110947

    Article  Google Scholar 

  • López ÁL, Vives X (2019) Overlapping ownership, R&D spillovers, and antitrust policy. J Polit Econ 127(5):2394–2437

    Article  Google Scholar 

  • Macho-Stadler I, Verdier T (1991) Strategic managerial incentives and cross ownership structure: a note. J Econ 53(3):285–297

    Article  Google Scholar 

  • Ma H, Qin CZ, Zeng C (2021) Incentive and welfare implications of cross-holdings in oligopoly. Econ Theory. https://doi.org/10.1007/s00199-021-01398-x

    Article  Google Scholar 

  • Miller NH, Pazgal AI (2001) The equivalence of price and quantity competition with delegation. RAND J Econ 32:284–301

    Article  Google Scholar 

  • Nain A, Wang Y (2018) The product market impact of minority stake acquisitions. Manag Sci 64(2):825–844

    Article  Google Scholar 

  • Nakamura Y (2011) Strategic managerial delegation and cross-border mergers. J Econ 104:49–89

    Article  Google Scholar 

  • Pal R (2015) Cournot vs. Bertrand under relative performance delegation: implications of positive and negative network externalities. Math Soc Sci 75:94–101

    Article  Google Scholar 

  • Reitman D (1994) Partial ownership arrangements and the potential for collusion. J Ind Econ 42(3):313–322

    Article  Google Scholar 

  • Reynolds RJ, Snapp BR (1986) The competitive effects of partial equity interests and joint ventures. Int J Ind Organ 4:141–153

    Article  Google Scholar 

  • Ritz RA (2008) Strategic incentives for market share. Int J Ind Organ 26(2):586–597

    Article  Google Scholar 

  • Salas-Fumas V (1992) Relative performance evaluation of management: the effects on industrial competition and risk sharing. Int J Ind Organ 10(3):473–489

    Article  Google Scholar 

  • Skliva D (1987) The strategic choice of managerial incentives. RAND J Econ 18:452–458

    Article  Google Scholar 

  • Vickers J (1985) Delegation and the theory of the firm. Econ J 95:138–147

    Article  Google Scholar 

  • Wang X (2023) Who is more aggressive under vertical product differentiation? Manag Decis Econ 44(1):608–618

    Article  Google Scholar 

  • Wang X, Wang LFS (2021) Vertical product differentiation, managerial delegation and social welfare in a vertically-related market. Math Soc Sci 113:149–159

    Article  Google Scholar 

  • Wang X, Wang LFS (2022) Corporate cannibalism in an oligopolistic market. Int J Econ Theory 18(3):402–417

    Article  Google Scholar 

  • Yang J, Zeng C (2021) Collusive stability of cross-holding with cost asymmetry. Theor Decis 91(4):549–566

    Article  Google Scholar 

  • Zhang J, Zhang Z (1997) R&D in a strategic delegation game. Manag Decis Econ 18(5):391–398

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the editor and two anonymous referees for their helpful comments and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huizhong Liu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We assume \(\alpha \in \left[0,\frac{1}{2}\right)\) and \(\delta \in (\mathrm{0,1})\) throughout the following proofs.

1.1 Proof of propositions and lemmas

1.1.1 Proof of Lemma 1

$$\begin{aligned} \partial p_{1}^{e} /\partial \lambda_{1} & = - \frac{(1 + \delta )(1 + 2\delta )}{{3 + (9 - \alpha - 6\delta )\delta }} < 0,\;\partial p_{1}^{e} /\partial \lambda_{2} = - \frac{1 + \alpha + (2 + \alpha )\delta }{{(1 - \alpha )(3 + (9 - \alpha + 6\delta )\delta )}} < 0, \\ \partial p_{2}^{e} /\partial \lambda_{1} & = - \frac{{(1 + \delta )^{2} }}{3 + (9 - \alpha + 6\delta )\delta } < 0,\;\partial p_{1}^{e} /\partial \lambda_{2} = - \frac{\alpha 1 + (1 + \delta )(1 + 3\delta )}{{(1 - \alpha )(3 + (9 - \alpha + 6\delta )\delta )}} < 0. \\ \end{aligned}$$
$$\begin{aligned} \partial \left| {\partial p_{1}^{e} /\partial \lambda_{1} } \right|/\partial \alpha & = \frac{\delta (1 + \delta )(1 + 2\delta )}{{(3 + (9 - \alpha + 6\delta )\delta )^{2} }} > 0, \\ \partial \left| {\partial p_{1}^{e} /\partial \lambda_{2} } \right|/\partial \alpha & = \frac{{6 + \delta (28 - \alpha (2 + \alpha ) + 41\delta - \alpha (4 + \alpha )\delta + 18\delta^{2} )}}{{(1 - \alpha )^{2} (3 + (9 - \alpha + 6\delta )\delta )^{2} }} > 0, \\ \partial \left| {\partial p_{2}^{e} /\partial \lambda_{1} } \right|/\partial \alpha & = \frac{{\delta (1 + \delta )^{2} }}{{(3 + (9 - \alpha + 6\delta )\delta )^{2} }} > 0, \\ \partial \left| {\partial p_{2}^{e} /\partial \lambda_{2} } \right|/\partial \alpha & = \frac{{6 + \delta (31 - \alpha^{2} - 2\alpha (1 + \delta )(1 + 3\delta ) + \delta (61 + 18\delta (3 + \delta )))}}{{(1 - \alpha )^{2} (3 + (9 - \alpha + 6\delta )\delta )^{2} }} > 0. \\ \end{aligned}$$

1.1.2 Proof of Proposition 1

$$\lambda_{1}^{e} - \lambda_{2}^{e} = \frac{(1 - \alpha )\delta (8 + 3\delta (7 + 4\delta ) + \alpha (5 + 6\delta (2 + \delta )))}{{21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta ))}} > 0,$$
$$\partial (\lambda_{1}^{e} - \lambda_{2}^{e} )/\partial \alpha = - \frac{{\left( \begin{gathered} 3\delta (1 + \delta )(1 + 2\delta )(5 + 2\delta (19 + 18\delta (2 + \delta )) - \hfill \\ \alpha^{2} (10 + \delta (25 + 12\delta )) + \alpha (70 + 2\delta (115 + 6\delta (19 + 6\delta )))) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }} < 0.$$

1.1.3 Proof of Proposition 2

$$\partial \lambda_{1}^{e} /\partial \alpha = \frac{6(\alpha ( - 7 + \alpha - 6\delta ) - 1)(1 + \delta )(1 + 2\delta )(3 + \delta (7 + 3\delta ))}{{(6\alpha (1 + \delta )(1 + 2\delta ) - 4\delta (20 + 3\delta (8 + 3\delta )) - (21 + \alpha^{2} \delta ))^{2} }}.$$

When \(\alpha\) is relatively low, i.e., \(\alpha < \left( {7 + 6\delta - \sqrt {45 + 84\delta + 36\delta^{2} } } \right)/2\), \(\partial \lambda_{1}^{e} /\partial \alpha < 0\);

when \(\alpha\) is relatively high, i.e., \(\alpha \ge \left( {7 + 6\delta - \sqrt {45 + 84\delta + 36\delta^{2} } } \right)/2\), \(\partial \lambda_{1}^{e} /\partial \alpha \ge 0\).

Therefore, there is a U-shaped relationship between the managerial delegation coefficient of firm 1 and the cross-ownership.

$$\partial \lambda_{2}^{e} /\partial \alpha = \frac{{\left( \begin{gathered} 3(1 + \delta )(1 + 2\delta )((2 + 3\delta )(4\delta^{2} (4 + 3\delta ) - 3) - \hfill \\ \alpha^{2} (6 + \delta (24 + \delta (31 + 12\delta ))) + \hfill \\ \alpha (42 + 4\delta (51 + \delta (89 + 6\delta (11 + 3\delta ))))) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }}$$

When \(\alpha\) is relatively low,

i.e., \(\alpha < \alpha ^{\prime\prime}(\delta ) = \left( \begin{gathered} \frac{13}{4} + 3\delta + \frac{6 + 3\delta (8 + 7\delta )}{{4(6 + \delta (24 + \delta (31 + 12\delta )))}} - \hfill \\ \sqrt 3 \sqrt {\frac{(1 + \delta )(1 + 2\delta )(5 + 6\delta )(3 + \delta (7 + 3\delta ))(9 + 4\delta (8 + 3\delta (3 + \delta )))}{{(6 + \delta (24 + \delta (31 + 12\delta )))^{2} }}} \hfill \\ \end{gathered} \right)\), \(\partial \lambda_{2}^{e} /\partial \alpha < 0\);

when \(\alpha\) is relatively high, i.e., \(\alpha \ge \alpha ^{\prime\prime}\), \(\partial \lambda_{2}^{e} /\partial \alpha \ge 0\).

Therefore, there is a U-shaped relationship between the managerial delegation coefficient of firm 2 and the cross-ownership.

1.1.4 Proof of Lemma 2

$$\partial \lambda_{1}^{e} /\partial \delta = \frac{{3(1 - \alpha^{2} )(31 + \alpha^{2} (1 - \delta^{2} ) - 2\alpha (2 + \delta (6 + 5\delta )) + 6\delta (25 + 2\delta (21 + \delta (14 + 3\delta ))))}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }} > 0$$
$$\partial \lambda_{2}^{e} /\partial \delta = \frac{{\left( \begin{gathered} 3(\alpha - 1)(25 + 144\delta + \alpha^{3} (1 + \delta )(\delta + 4\delta^{2} - 1) + 8\delta^{2} (38 + \delta (35 + 12\delta )) - \hfill \\ \alpha^{2} (1 + 2\delta )(7 + 2\delta (11 + \delta (13 + 6\delta ))) - 2\alpha (1 + \delta )(4 + \delta (23 + 2\delta (19 + 9\delta )))) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }} < 0$$

1.1.5 Proof of Lemma 3

The controlling shareholders’ profit of firm \(i\), the consumer surplus, and social welfare are as follows:

$$\Pi_{1}^{e} = \frac{{\left( {1 + \delta } \right)\left( \begin{gathered} 3\alpha \left( {1 + \delta } \right)\left( {1 + 2\delta } \right)\left( {18 + \delta \left( {136 + 9\delta \left( {37 + 12\delta \left( {3 + \delta } \right)} \right)} \right)} \right) - \hfill \\ \alpha^{2} \left( {27 + \delta \left( {237 + \delta \left( {823 + 3\delta \left( {457 + 36\delta \left( {10 + 3\delta } \right)} \right)} \right)} \right)} \right) - \hfill \\ \alpha^{4} \delta^{2} \left( {1 + 3\delta } \right) - 3\alpha^{3} \left( {1 + \delta } \right)\left( {1 + 2\delta } \right)\left( {3 + 4\delta - 6\delta^{2} } \right) + 4\left( {2 + 3\delta } \right)\left( {3 + \delta \left( {7 + 3\delta } \right)} \right)^{2} \hfill \\ \end{gathered} \right)}}{{2\left( {21 + \alpha^{2} \delta - 6\alpha \left( {1 + \delta } \right)\left( {1 + 2\delta } \right) + 4\delta \left( {20 + 3\delta \left( {8 + 3\delta } \right)} \right)} \right)^{2} }},$$
$$\Pi_{2}^{e} = \frac{{9\left( {1 - \alpha } \right)\left( {2 - \alpha + 3\delta } \right)\left( {1 + \delta } \right)^{2} \left( {1 + 2\delta } \right)^{2} \left( {4 + \alpha + 11\delta + 6\delta^{2} } \right)}}{{2\left( {21 + \alpha^{2} \delta - 6\alpha \left( {1 + \delta } \right)\left( {1 + 2\delta } \right) + 4\delta \left( {20 + 3\delta \left( {8 + 3\delta } \right)} \right)} \right)^{2} }},$$
$$\begin{aligned} CS^{e} & = \mathop \smallint \nolimits_{{p_{1} }}^{{\frac{{p_{2} - p_{1} }}{\delta }}} \left( {x - p_{1} } \right){\text{d}}x + \mathop \smallint \nolimits_{{\frac{{p_{2} - p_{1} }}{\delta }}}^{1} \left( {\left( {1 + \delta } \right)x - p_{2} } \right){\text{d}}x = \\ & \quad \frac{{\left( {1 + \delta } \right)^{2} \left( \begin{gathered} 36\left( {2 - \alpha } \right)^{2} + 3\left( {2 - \alpha } \right)\left( {146 - \alpha \left( {63 - 4\alpha } \right)} \right)\delta + 324\delta ^{5} - \hfill \\ 3\left( {4\alpha \left( {125 - \left( {22 - \alpha } \right)\alpha } \right) - 779} \right)\delta ^{3} + 36\left( {37 - \left( {14 - \alpha } \right)\alpha } \right)\delta ^{4} + \hfill \\ \left( {2053 - \alpha \left( {1680 - \alpha \left( {403 - \left( {30 - \alpha } \right)\alpha } \right)} \right)} \right)\delta ^{2} \hfill \\ \end{gathered} \right)}}{{2\left( {21 + \alpha ^{2} \delta - 6\alpha \left( {1 + \delta } \right)\left( {1 + 2\delta } \right) + 4\delta \left( {20 + 3\delta \left( {8 + 3\delta } \right)} \right)} \right)^{2} }}, \\ \end{aligned}$$
$$\begin{aligned} SW^{e} & = CS^{e} + \Pi_{1}^{e} + \Pi_{2}^{e} = \\ & \quad \frac{{\left( {1 + \delta } \right)\left( \begin{gathered} 288 - 2\alpha 1^{4} \delta^{3} - 6\alpha 1^{3} \delta \left( {1 + \delta } \right)\left( {1 - 2\delta } \right)\left( {1 + 2\delta } \right) - \hfill \\ 6\alpha \left( {1 + \delta } \right)\left( {1 + 2\delta } \right)\left( {30 + \delta \left( {113 + 20\delta \left( {7 + 3\delta } \right)} \right)} \right) + \hfill \\ \alpha^{2} \left( {18 + \delta \left( {129 + \delta \left( {279 + 2\delta \left( {89 - 6\delta \left( {5 + 6\delta } \right)} \right)} \right)} \right)} \right) + \hfill \\ \delta \left( {2130 + \delta \left( {6480 + \delta \left( {10453 + 3\delta \left( {3173 + 12\delta \left( {130 + 27\delta } \right)} \right)} \right)} \right)} \right) \hfill \\ \end{gathered} \right)}}{{2\left( {21 + \alpha^{2} \delta - 6\alpha \left( {1 + \delta } \right)\left( {1 + 2\delta } \right) + 4\delta \left( {20 + 3\delta \left( {8 + 3\delta } \right)} \right)} \right)^{2} }}. \\ \end{aligned}$$
$$\partial (\Pi_{1}^{e} + \Pi_{2}^{e} )/\partial \alpha = \frac{{\left( \begin{gathered} 3(1 - \alpha )(1 + \delta )(1 + 2\delta )(162 + \delta (1377 - \alpha^{3} \delta (1 + \delta )(1 + 3\delta ) + \hfill \\ \alpha^{2} \delta (27 + \delta (109 + 6\delta (23 + 9\delta ))) + \hfill \\ \delta (4985 + 2\delta (5011 + 6\delta (1013 + 6\delta (124 + 51\delta + 9\delta^{2} )))) - \hfill \\ \alpha (81 + \delta (558 + \delta (1511 + 12\delta (167 + 27\delta (4 + \delta ))))))) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{3} }} > 0$$
$$\partial CS^{e} /\partial \alpha = - \frac{{\left( \begin{gathered} 3(1 + \delta )^{2} (1 + 2\delta )(\alpha^{4} \delta^{3} - 9\alpha^{3} \delta^{2} (1 + \delta )(1 + 2\delta ) + \hfill \\ 2(2 + 3\delta )^{2} (3 + 4\delta )^{2} (3 + \delta (7 + 3\delta )) + 9\alpha^{2} \delta (1 + 2\delta )(6 + \delta (19 + 6\delta (3 + \delta ))) - \hfill \\ 3\alpha (1 + 2\delta )(36 + \delta (225 + \delta (507 + 2\delta (253 + 3\delta (37 + 6\delta )))))) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{3} }} < 0,$$
$$\partial SW^{e} /\partial \alpha = - \frac{{\left( \begin{gathered} (3(1 + \delta )(1 + 2\delta )^{2} (\alpha^{3} \delta^{2} (19 + 3\delta (13 + 6\delta )) - \alpha^{4} \delta^{2} (1 + \delta ) - \hfill \\ 9\alpha^{2} \delta (1 + \delta )(3 + \delta (19 + 6\delta (5 + 2\delta ))) + \hfill \\ (1 + \delta )(2 + 3\delta )(27 + 2\delta (81 + \delta (151 + 9\delta (11 + 2\delta )))) + \hfill \\ \alpha (54 + \delta (351 + \delta (1079 + 6\delta (324 + \delta (335 + 3\delta (59 + 12\delta )))))))) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{3} }} < 0.$$

1.1.6 Proof of Proposition 3

When the firm’s owner manages the firm by himself, i.e., \({\lambda }_{i}=0\), the profit of firm i’s controlling shareholders, the consumer surplus, and social welfare are as follows:

$$\Pi_{1}^{E} = \frac{{\left( {1 + \delta } \right)\left( {1 + 3\delta } \right)\left( {\left( {1 + \delta } \right)^{2} + \alpha \left( {1 + \delta } \right)\left( {1 + 2\delta } \right)\left( {1 + 3\delta } \right) - \alpha^{2} \delta^{2} } \right)}}{{2\left( {3 + \delta \left( {9 - \alpha + 6\delta } \right)} \right)^{2} }},$$
$$\Pi_{2}^{E} = \frac{{\left( {1 - \alpha } \right)\left( {1 + \delta } \right)^{2} \left( {1 + 2\delta } \right)\left( {1 + 3\delta } \right)^{2} }}{{2\left( {3 + \delta \left( {9 - \alpha + 6\delta } \right)} \right)^{2} }},$$
$$\Pi_{1}^{e} - \Pi_{1}^{E} = \frac{1}{2}(1 + \delta )\left( \begin{gathered} \frac{{(1 + 3\delta )(\alpha^{2} \delta^{2} - (1 + \delta )^{2} - \alpha (1 + \delta )(1 + 2\delta )(1 + 3\delta ))}}{{(3 + \delta (9 - \alpha + 6\delta ))^{2} }} + \hfill \\ \frac{{\left( \begin{gathered} 4(2 + 3\delta )(3 + \delta (7 + 3\delta ))^{2} - \alpha^{4} \delta^{2} (1 + 3\delta ) - 3\alpha^{3} (1 + \delta )(1 + 2\delta )(3 + 4\delta - 6\delta^{2} ) + \hfill \\ 3\alpha (1 + \delta )(1 + 2\delta )(18 + \delta (136 + 9\delta (37 + 12\delta (3 + \delta )))) - \hfill \\ \alpha^{2} (27 + \delta (237 + \delta (823 + 3\delta (457 + 36\delta (10 + 3\delta ))))) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }} \hfill \\ \end{gathered} \right) > 0$$
$$\Pi_{2}^{e} - \Pi_{2}^{E} = \frac{1}{2}(1 - \alpha )(1 + \delta )^{2} (1 + 2\delta )\left( {\frac{{9(2 - \alpha + 3\delta )(1 + 2\delta )(4 + \alpha + 11\delta + 6\delta^{2} )}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }} - \frac{{(1 + 3\delta )^{2} }}{{(3 + \delta (9 - \alpha 1 + 6\delta ))^{2} }}} \right) > 0$$
$$\begin{gathered} \partial (\Pi _{1}^{e} + \Pi _{2}^{e} - \Pi _{1}^{E} - \Pi _{2}^{E} )/\partial \alpha = \hfill \\ \frac{{\left( \begin{gathered} (1 + \delta )(9\alpha ^{5} \delta ^{3} (1 + \delta )(1 + 2\delta )(31 + \delta (181 + \delta (377 + 18\delta (18 + 5\delta )))) - \hfill \\ \alpha ^{6} \delta ^{4} (29 + \delta (173 + 6\delta (61 + \delta (53 + 15\delta )))) - 3\alpha ^{4} \delta ^{2} (261 + \delta (2922 + \hfill \\ \delta (14125 + \delta (38447 + \delta (64297 + 2\delta (33683 + 3\delta (7145 + 24\delta (104 + 15\delta )))))))) + \hfill \\ 3\alpha ^{3} \delta (1 + \delta )(1 + 2\delta )(144 + \delta (243 - \delta (5694 + \delta (33963 + \delta (85712 + \hfill \\ 3\delta (39029 + 6\delta (5023 + 12\delta (173 + 30\delta )))))))) + \hfill \\ 3\alpha ^{2} \delta (1 + \delta )(5049 + \delta (76383 + \delta (509277 + \delta (1969234 + \hfill \\ 3\delta (1628731 + 2\delta (1353842 + 9\delta (169607 + 4\delta (32018 + 9\delta (1723 + 484\delta + 60\delta ^{2} ))))))))) - \hfill \\ 3\alpha (1 + \delta )(1 + 2\delta )(4374 + \delta (73440 + \delta (546363 + \delta (2378220 + \hfill \\ \delta (6728478 + \delta (12987847 + 6\delta (2908697 + 18\delta (151211 + 3\delta (32219 + 6\delta (2237 + 548\delta + 60\delta ^{2} )))))))))) + \hfill \\ (1 + \delta )(13122 + \delta (224235 + \delta (1734345 + \delta (8024625 + \delta (24713615 + \hfill \\ 6\delta (8882357 + 2\delta (6863465 + 6\delta (1273504 + 9\delta (112307 + \delta (61757 + 12\delta (1853 + 6\delta (65 + 6\delta ))))))))))))) \hfill \\ \end{gathered} \right)}}{{(3 + \delta (9 - \alpha + 6\delta ))^{3} (21 + \alpha ^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{3} }} > 0 \hfill \\ \end{gathered}$$
$$\begin{gathered} \partial (\Pi_{1}^{e} + \Pi_{2}^{e} - \Pi_{1}^{E} - \Pi_{2}^{E} )/\partial \delta = \frac{1}{72} \hfill \\ \left( \begin{gathered} \frac{3(1 - \alpha )(3 - \alpha (11 - 2\alpha ))}{{3 + (9 - \alpha + 6\delta )\delta }} + \hfill \\ \frac{{\left( \begin{gathered} - 27(1 + \delta ) + \alpha (3\alpha (\alpha (73 - (20 - \alpha )\alpha )) - \hfill \\ 21 - (9 + \alpha (165 - \alpha (480 - \alpha (235 - (29 - \alpha )\alpha ))))\delta ) \hfill \\ \end{gathered} \right)}}{{(3 + \delta (9 - \alpha + 6\delta ))^{3} }} - \hfill \\ \frac{{\left( \begin{gathered} 6(\alpha^{2} - 1)( - 543 - 3\alpha ( - 220 + \alpha (2 + \alpha )(5 + \alpha (3 + 2\alpha ))) - \hfill \\ 1670\delta + \alpha (1978 - \alpha (61 + \alpha (104 + \alpha (52 + (11 - \alpha )\alpha ))))\delta - \hfill \\ 6(2 - \alpha )(104 - \alpha (63 + \alpha (40 + \alpha (9 + \alpha ))))\delta^{2} ) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{3} }} \hfill \\ \frac{{\left( \begin{gathered} 6( - 41 + \alpha (355 - \alpha (412 - \alpha (91 + \alpha (20 + \alpha (13 + \alpha ))))) - \hfill \\ 195\delta + \alpha (1102 - \alpha (1141 - \alpha (253 + \alpha (41 + (22 - \alpha )\alpha ))))\delta - \hfill \\ 3(28 - \alpha (242 - \alpha (283 - \alpha (62 + \alpha (23 + 2\alpha )))))\delta^{2} ) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }} \hfill \\ \frac{{6( - 3(5 + 13\delta ) - \alpha (11 - 30\delta - \alpha (5 + 2\alpha 1 + \alpha^{2} - 6(4 - \alpha )\delta )))}}{{21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta ))}} + \hfill \\ \frac{9\delta + \alpha (78 + 189\delta - \alpha (96 + 345\delta + \alpha (55 - 159\delta - \alpha (20 - \alpha - 12\delta ))))}{{(3 + \delta (9 - \alpha 1 + 6\delta ))^{2} }} \hfill \\ \end{gathered} \right) < 0 \hfill \\ \end{gathered}$$

1.1.7 Proof of Proposition 4

$$\begin{aligned} CS^{E} & = \mathop \smallint \nolimits_{{p_{1} }}^{{\frac{{p_{2} - p_{1} }}{\delta }}} \left( {x - p_{1} } \right){\text{d}}x + \mathop \smallint \nolimits_{{\frac{{p_{2} - p_{1} }}{\delta }}}^{1} \left( {\left( {1 + \delta } \right)x - p_{2} } \right){\text{d}}x = \\ & \quad \frac{{\left( {1 + \delta } \right)^{2} \left( {4 + \delta \left( {17 - 4\alpha + \left( {22 - \left( {8 - \alpha } \right)\alpha } \right)\delta + 9\delta^{2} } \right)} \right)}}{{2\left( {3 + \delta \left( {9 - \alpha + 6\delta } \right)} \right)^{2} }}, \\ \end{aligned}$$
$$\begin{aligned} SW^{E} & = CS^{E} + \Pi_{1}^{E} + \Pi_{2}^{E} = \\ & \quad \frac{{\left( {1 + \delta } \right)\left( {6 + \delta \left( {35 - 4\alpha + 3\left( {25 - 4\alpha } \right)\delta + \left( {73 - 2\alpha \left( {4 + \alpha } \right)} \right)\delta^{2} + 27\delta^{3} } \right)} \right)}}{{2\left( {3 + \delta \left( {9 - \alpha + 6\delta } \right)} \right)^{2} }}. \\ \end{aligned}$$
$$CS^{e} - CS^{E} = \frac{1}{2}(1 + \delta )^{2} \left( \begin{gathered} - \frac{{4 + \delta (17 - 4\alpha + (22 + ( - 8 + \alpha )\alpha )\delta + 9\delta^{2} )}}{{(3 + \delta (9 - \alpha 1 + 6\delta ))^{2} }} + \hfill \\ \frac{{\left( \begin{gathered} 36(2 - \alpha )^{2} + 3(2 - \alpha )(146 - \alpha (63 - 4\alpha ))\delta + \hfill \\ (2053 - \alpha (1680 - \alpha (403 - (30 - \alpha )\alpha )))\delta^{2} + \hfill \\ 3(779 - 4\alpha (125 + (22 + - \alpha )\alpha ))\delta^{3} + 36(37 - (14 - \alpha )\alpha )\delta^{4} + 324\delta^{5} \hfill \\ \end{gathered} \right)}}{{(21 + \alpha 1^{2} \delta - 6\alpha 1(1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }} \hfill \\ \end{gathered} \right) < 0$$
$$SW^{e} - SW^{E} = \frac{1}{2}(1 + \delta )\left( \begin{gathered} - \frac{{6 + \delta (35 - 4\alpha + 3(25 - 4\alpha )\delta + (73 - 2\alpha (4 + \alpha ))\delta^{2} + 27\delta^{3} )}}{{(3 + \delta (9 - \alpha + 6\delta ))^{2} }} + \hfill \\ \frac{{\left( \begin{gathered} (288 - 2\alpha^{4} \delta^{3} + 6\alpha^{3} \delta (1 + \delta )(2\delta - 1)(1 + 2\delta ) - \hfill \\ 6\alpha (1 + \delta )(1 + 2\delta )(30 + \delta (113 + 20\delta (7 + 3\delta ))) + \hfill \\ \alpha^{2} (18 + \delta (129 + \delta (279 - 2\delta ( - 89 + 6\delta (5 + 6\delta ))))) + \hfill \\ \delta (2130 + \delta (6480 + \delta (10453 + 3\delta (3173 + 12\delta (130 + 27\delta )))))) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha^{2} \delta - 6\alpha 1(1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }} \hfill \\ \end{gathered} \right) < 0$$
$$\partial \left( {CS^{E} - CS^{e} } \right)/\partial \alpha = \frac{1}{2}(1 + \delta )^{2} \left( \begin{gathered} \frac{2\delta (2 + (4 - \alpha )\delta )}{{(3 + \delta (9 - \alpha + 6\delta ))^{2} }} - \frac{{2\delta (4 + \delta (17 - 4\alpha + (22 + ( - 8 + \alpha )\alpha )\delta + 9\delta^{2} ))}}{{(3 + \delta (9 - \alpha + 6\delta ))^{3} }} + \hfill \\ \frac{{\left( \begin{gathered} 4(36(2 - \alpha )^{2} + 3(2 - \alpha )(146 - \alpha (63 - 4\alpha ))\delta + \hfill \\ (2053 - \alpha (1680 - \alpha (403 - (30 - \alpha )\alpha )))\delta^{2} - \hfill \\ 3( - 779 + 4\alpha (125 - (22 - \alpha )\alpha ))\delta^{3} + \hfill \\ 36(37 - (14 - \alpha )\alpha )\delta^{4} + 324\delta^{5} )(3 + \delta (9 - \alpha + 6\delta )) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{3} }} + \hfill \\ \frac{{\left( \begin{gathered} 4\alpha^{3} \delta^{2} - 18\alpha^{2} \delta (2 + \delta )(1 + 2\delta ) + \alpha (72 + 2\delta (213 + \delta (13 + 6\delta )(31 + 6\delta ))) - \hfill \\ 12(1 + 2\delta )(12 + \delta (44 + \delta (52 + 21\delta ))) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha 1^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }} \hfill \\ \end{gathered} \right) > 0$$
$$\partial \left( {SW^{E} - SW^{e} } \right)/\partial \alpha = \frac{1}{2}(1 + \delta )\left( \begin{gathered} \frac{4\delta (1 + \delta (3 + (2 + \alpha 1)\delta ))}{{(3 + \delta (9 - \alpha + 6\delta ))^{2} }} - \frac{{2\delta (6 + \delta (35 - 4\alpha + 3(25 - 4\alpha )\delta + (73 - 2\alpha (4 + \alpha ))\delta^{2} + 27\delta^{3} ))}}{{(3 + \delta (9 - \alpha + 6\delta ))^{3} }} + \hfill \\ \frac{{\left( \begin{gathered} - 8\alpha^{3} \delta^{3} - 18\alpha^{2} \delta (1 + \delta )(1 - 2\delta )(1 + 2\delta ) - 6(1 + \delta )(1 + 2\delta )(30 + \delta (113 + 20\delta (7 + 3\delta ))) + \hfill \\ 2\alpha (18 + \delta (129 + \delta (279 + 2\delta (89 - 6\delta (5 + 6\delta ))))) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha 1^{2} \delta - 6\alpha 1(1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }} + \hfill \\ \frac{{\left( \begin{gathered} (4(3 + \delta (9 - \alpha + 6\delta ))(288 - 2\alpha^{4} \delta^{3} - 6\alpha^{3} \delta (1 + \delta )(1 - 2\delta )(1 + 2\delta ) - \hfill \\ 6\alpha (1 + \delta )(1 + 2\delta )(30 + \delta (113 + 20\delta (7 + 3\delta ))) + \hfill \\ \alpha^{2} (18 + \delta (129 + \delta (279 - 2\delta ( - 89 + 6\delta (5 + 6\delta ))))) + \hfill \\ \delta (2130 + \delta (6480 + \delta (10453 + 3\delta (3173 + 12\delta (130 + 27\delta ))))))) \hfill \\ \end{gathered} \right)}}{{(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{3} }} \hfill \\ \end{gathered} \right) > 0$$

1.2 The scenario where firm 2 holds the shares of firm 1

In the second stage, the manager of firm \(i\) determines the price based on the managerial contract:

$$\left\{ \begin{gathered} \mathop {M{\text{ax}}}\limits_{{p_{1} }} M_{1} = (1 - \alpha )\pi_{1} + \lambda_{1} D_{1} , \hfill \\ \mathop {M{\text{ax}}}\limits_{{p_{2} }} M_{2} = \pi_{2} + \alpha \pi_{1} + \lambda_{2} D_{2} . \hfill \\ \end{gathered} \right.$$
(6)

By solving the above equations, we obtain the equilibrium prices charged by the two firms:

$$\left\{ \begin{aligned} &p_{1}^{\prime } = \frac{{(1 + \delta )((1 + 2\delta )(1 - \lambda_{1} ) - \alpha (1 + 2\delta + \lambda_{1} )) - (1 - \alpha )(1 + 2\delta )\lambda_{2} }}{(1 - \alpha )(3 + (9 - \alpha + 6\delta )\delta )}, \hfill \\ &p_{2}^{\prime } = \frac{{\left( \begin{gathered} (1 + \delta )(1 - \lambda_{1} - \alpha (1 + \lambda_{1} + \delta (4 + 3\delta + 2\lambda_{1} - 3\lambda_{2} ) - \lambda_{2} ) - \hfill \\ \lambda_{2} + \delta (4 + 3\delta - \lambda_{1} - 3\lambda_{2} )) \hfill \\ \end{gathered} \right)}}{(1 - \alpha )(3 + (9 - \alpha + 6\delta )\delta )}. \hfill \\ \end{aligned} \right.$$
(7)

Similar to Lemma 1, the equilibrium price of firm \({\text{i}}\) decreases as the managerial delegation coefficients of firm \({\text{i}}\) and firm \({\text{j}}\) increase, i.e., \(\partial {{\text{p}}}_{{\text{i}}}^{\mathrm{^{\prime}}}/\partial {\uplambda }_{{\text{i}}}<0\), \(\partial {{\text{p}}}_{{\text{i}}}^{\mathrm{^{\prime}}}/\partial {\uplambda }_{{\text{j}}}<0\). And the cross-ownership increases the impact of managerial delegation on the equilibrium price, i.e., \(\frac{\partial \left|\partial {{\text{p}}}_{{\text{i}}}^{\mathrm{^{\prime}}}/\partial {\uplambda }_{{\text{i}}}\right|}{\partial \mathrm{\alpha }}>0\),\(\frac{\partial \left|\partial {{\text{p}}}_{{\text{i}}}^{\mathrm{^{\prime}}}/\partial {\uplambda }_{{\text{j}}}\right|}{\partial \mathrm{\alpha }}>0\).

In the first stage, the owners decide the intensity of managerial delegation according to the profit maximization of the controlling shareholders:

$$\left\{ \begin{gathered} \mathop {M{\text{ax}}}\limits_{{\lambda_{1} }} \Pi_{1} = (1 - \alpha )\pi_{1} , \hfill \\ \mathop {M{\text{ax}}}\limits_{{\lambda_{2} }} \Pi_{2} = \pi_{2} + \alpha \pi_{1} , \hfill \\ \end{gathered} \right.$$
(8)

Solving the equation system of the first-order conditions yields:

$$\left\{ \begin{aligned} &\lambda_{1}^{\prime } = \frac{(\alpha - 1)(1 + \alpha + \delta + 2\alpha \delta )(3 + \delta (7 + 3\delta ))}{{(1 + \delta )(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))}}, \hfill \\ &\lambda_{2}^{\prime } = \frac{{(1 + 2\delta )(2\alpha \delta - 3(1 + \delta )(1 + 2\delta ) + \alpha^{2} (3 + 2\delta ))}}{{21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta ))}}. \hfill \\ \end{aligned} \right.$$
(9)

Same as Proposition 1, the optimal managerial delegation coefficient of the firm producing low-quality products is higher than that of the firm producing high-quality products, that is, \({\uplambda }_{1}^{\mathrm{^{\prime}}}\ge {\uplambda }_{2}^{\mathrm{^{\prime}}}\). The level of cross-ownership tends to reduce the disparity in managerial delegation coefficients between the two firms, i.e., \(\partial ({\lambda }_{1}{\mathrm{^{\prime}}}-{\lambda }_{2}{\mathrm{^{\prime}}})/\partial \alpha <0\).

Similar to Proposition 2, when firm 2 holds the shares of firm 1, there is a U-shaped relationship between managerial delegation coefficients and cross-ownership.

When \(\alpha > \alpha^{\prime } (\delta ) = \frac{29}{8} + 3\delta - \left( \begin{gathered} \frac{3(2 + \delta (10 + 9\delta ))}{{8(6 + \delta (30 + \delta (47 + 24\delta )))}} + \hfill \\ \sqrt 3 \sqrt {\frac{(1 + \delta )(1 + 2\delta )(3 + 4\delta )(5 + 6\delta )(9 + \delta (55 + 3\delta (40 + \delta (37 + 12\delta ))))}{{(6 + \delta (30 + \delta (47 + 24\delta )))^{2} }}} \hfill \\ \end{gathered} \right)\)\(\partial \lambda_{1}^{\prime } /\partial \alpha > 0\); and when \(\alpha \le \alpha^{\prime } (\delta )\), \(\partial \lambda_{1}^{\prime } /\partial \alpha \le 0\).

When \(\alpha > \alpha^{\prime \prime } (\delta ) = \frac{1}{2}(7 + 6\delta - \sqrt {45 + 84\delta + 36\delta^{2} } )\), \(\partial \lambda_{2}^{\prime } /\partial \alpha > 0\), and when \(\alpha \le \alpha^{\prime \prime } (\delta )\), \(\partial \lambda_{2}^{\prime } /\partial \alpha \le 0\).

The controlling shareholders’ profit of firm \(i\), the consumer surplus, and social welfare are as follows:

$$\Pi_{1}^{\prime } = \frac{{(1 - \alpha )(4 + \alpha + 6\delta )(2(1 + \delta ) - \alpha )(3 + \delta (7 + 3\delta ))^{2} }}{{2(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }},$$
$$\Pi_{2}^{\prime } = \frac{{\left( \begin{gathered} 9(1 + \delta )^{2} (1 + 2\delta )^{3} (2 + 3\delta )(4 + 3\delta ) - 3\alpha^{2} (1 + 2\delta )(9 + \delta (36 + 37\delta - 9\delta^{3} )) - \alpha^{4} \delta^{2} - \hfill \\ \alpha^{3} (9 + \delta (4 + 3\delta )(9 + \delta (6 + 5\delta ))) + 2\alpha (1 + \delta )(27 + \delta (117 + \delta (91 - 6\delta (38 + 3\delta (22 + 9\delta ))))) \hfill \\ \end{gathered} \right)}}{{2(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }},$$
$$\begin{aligned} CS^{\prime } & = \mathop \smallint \nolimits_{{p_{1} }}^{{\frac{{p_{2} - p_{1} }}{\delta }}} \left( {x - p_{1} } \right){\text{d}}x + \mathop \smallint \nolimits_{{\frac{{p_{2} - p_{1} }}{\delta }}}^{1} \left( {\left( {1 + \delta } \right)x - p_{2} } \right){\text{d}}x = \\ & \quad \frac{{\left( \begin{gathered} \alpha^{4} \delta^{2} (1 + \delta ) - 2\alpha^{3} \delta (6 + \delta (21 + \delta (23 + 9\delta ))) - \hfill \\ 6\alpha (1 + \delta )(1 + 2\delta )(24 + \delta (100 + \delta (149 + 9\delta (11 + 3\delta )))) + \hfill \\ \alpha^{2} (36 + \delta (249 + \delta (640 + \delta (779 + 117\delta (4 + \delta ))))) + \hfill \\ (1 + \delta )^{2} (144 + \delta (876 + \delta (2053 + 3\delta (779 + 12\delta (37 + 9\delta ))))) \hfill \\ \end{gathered} \right)}}{{2(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }}, \\ \end{aligned}$$
$$\begin{aligned} SW^{\prime } & = CS^{\prime } + \Pi_{1}^{\prime } + \Pi_{2}^{\prime } = \\ & \quad \frac{{\left( \begin{gathered} \alpha^{4} \delta^{3} - 2\alpha^{3} \delta (3 + 4\delta )(1 + 3\delta (1 + \delta )) - \hfill \\ 2\alpha (1 + 2\delta )(90 + \delta (510 + \delta (1156 + 3\delta (443 + 9\delta (29 + 7\delta ))))) + \hfill \\ \alpha^{2} (18 + \delta (165 + \delta (548 + 3\delta (289 + \delta (224 + 69\delta ))))) + \hfill \\ (1 + \delta )(288 + \delta (2130 + \delta (6480 + \delta (10453 + 3\delta (3173 + 12\delta (130 + 27\delta )))))) \hfill \\ \end{gathered} \right)}}{{2(21 + \alpha^{2} \delta - 6\alpha (1 + \delta )(1 + 2\delta ) + 4\delta (20 + 3\delta (8 + 3\delta )))^{2} }}. \\ \end{aligned}$$

When the firm’s owner manages the firm by himself, i.e., \({\lambda }_{i}=0\), the profit of firm is controlling shareholders, the consumer surplus, and social welfare are as follows:

$$\Pi_{1}^{\prime \prime } = \frac{{(1 - \alpha )(1 + \delta )^{3} (1 + 3\delta )}}{{2(3 + \delta (9 - \alpha + 6\delta ))^{2} }},$$
$$\Pi_{2}^{\prime \prime } = \frac{(\alpha + (1 + \delta )(1 + 3\delta ))(1 + \delta (6 + (11 - \alpha + 6\delta )\delta ))}{{2(3 + \delta (9 - \alpha + 6\delta ))^{2} }},$$
$$\begin{aligned} CS^{\prime \prime } & = \mathop \smallint \nolimits_{{p_{1} }}^{{\frac{{p_{2} - p_{1} }}{\delta }}} \left( {x - p_{1} } \right){\text{d}}x + \mathop \smallint \nolimits_{{\frac{{p_{2} - p_{1} }}{\delta }}}^{1} \left( {\left( {1 + \delta } \right)x - p_{2} } \right){\text{d}}x = \\ & \quad \frac{{(1 + \delta )(4 + \delta (21 + \alpha^{2} \delta - 2\alpha (1 + \delta )(2 + 3\delta ) + \delta (39 + \delta (31 + 9\delta ))))}}{{2(3 + \delta (9 - \alpha + 6\delta ))^{2} }}, \\ \end{aligned}$$
$$\begin{aligned} SW^{\prime \prime } & = CS^{\prime \prime } + \Pi_{1}^{\prime \prime } + \Pi_{2}^{\prime \prime } = \\ & \quad \frac{{6 + \delta (41 + \alpha^{2} \delta^{2} - 4\alpha (1 + \delta )(1 + 3\delta (1 + \delta )) + \delta (110 + \delta (148 + \delta (100 + 27\delta ))))}}{{2(3 + \delta (9 - \alpha + 6\delta ))^{2} }}. \\ \end{aligned}$$

Same as Proposition 3, managerial delegation improves controlling shareholders’ profits for firm 1 and firm 2, i.e., \({\Pi }_{{\text{i}}}^{\mathrm{^{\prime}}}>{\Pi }_{{\text{i}}}^{\mathrm{^{\prime}}\mathrm{^{\prime}}}\) for \({\text{i}}=\mathrm{1,2}\). As the proportion of cross-ownership rises, the joint profit difference between the scenarios with and without managerial delegation increases, i.e., \(\partial [({\Pi }_{1}^{\mathrm{^{\prime}}}+{\Pi }_{2}^{\mathrm{^{\prime}}})-({\Pi }_{1}^{{\prime}{\prime}}+{\Pi }_{2}^{\mathrm{^{\prime}}\mathrm{^{\prime}}})]/\partial \mathrm{\alpha }>0\).

Same as Proposition 4, managerial delegation reduces consumer surplus and social welfare with vertical product differentiation, i.e., \({{\text{CS}}}^{\mathrm{^{\prime}}}<{{\text{CS}}}^{\mathrm{^{\prime}}\mathrm{^{\prime}}},\mathrm{ S}{{\text{W}}}^{\mathrm{^{\prime}}}<{{\text{SW}}}^{\mathrm{^{\prime}}\mathrm{^{\prime}}}\). When the cross-ownership proportion increases, the disparity in consumer surplus between the scenarios with and without managerial delegation widens. This effect is also observed in social welfare, i.e., \(\partial ({{\text{CS}}}^{\mathrm{^{\prime}}\mathrm{^{\prime}}}-{{\text{CS}}}^{\mathrm{^{\prime}}})/\partial \mathrm{\alpha }>0,\partial ({{\text{SW}}}^{\mathrm{^{\prime}}\mathrm{^{\prime}}}-{{\text{SW}}}^{\mathrm{^{\prime}}})/\partial \mathrm{\alpha }>0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, L.F.S. & Liu, H. Cross-ownership and managerial delegation under vertical product differentiation. J Econ (2024). https://doi.org/10.1007/s00712-024-00871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00712-024-00871-0

Keywords

JEL Classification

Navigation