Skip to main content

Advertisement

Log in

Taxation, capital accumulation, environment and unemployment in an efficiency wage model

  • Published:
Journal of Economics Aims and scope Submit manuscript

Abstract

We develop an aggregate growth model with environmental pollution and unemployment equilibrium to be explained by efficiency wage hypothesis. Environmental quality is degraded due to emissions generated from production and is improved by abatement expenditure. The efficiency of a worker varies positively with its wage, unemployment rate and environmental quality. In the short-run equilibrium, an exogenous improvement in environmental quality given the capital stock lowers efficiency wage rate and unemployment rate but raises the rental rate on capital and the level of output; and an exogenous increase in capital stock given the environmental quality raises efficiency wage rate and level of output but lowers rental rate on capital and unemployment rate. Capital stock and environmental quality accumulate over time. A proportional tax is imposed on the rental income on capital to finance the abatement expenditure; and households’ savings is invested. An increase in the tax rate raises the capital stock, national income and the environmental quality but lowers the unemployment rate in the long run equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See, for example, Alexopoulos (2003), Brecher et al. (2002) Solow (1979), Summers (1988), Calvo (1979), Shapiro and Stiglitz (1984), Pisauro (1991), Agell and Lundborg (1992, 1995), Salop (1979), Akerlof (1984), Akerlof and Yellen (1990) etc.

  2. See, for example, Alexopoulos (2003), Brecher et al. (2002) etc.

  3. See, for example, Smulders (1999), Smulders and Gradus (1996), Gradus and Smulders (1993), Greiner (2005), Economides and Philippopoulos (2008), Managi (2006), Dinda (2005), Di Vita (2008), Hartman and Kwon (2005), Heutel (2012), Le Kama (2001), Elbasha and Roe (1996), Oueslati (2002), Bertinelli et al. (2008), Byrne (1997), Itaya (2008), Bovenberg and Smulders (1995), Huang and Cai (1994), Benarroch and Weder (2006), Selden and Song (1995), Brock and Taylor (2005) and many others.

  4. For employment contribution of informal sector, one can find evidences in Papola (1981), Mitra (1998) etc. For emission generation from informal sector, evidences are available in Sethuraman (1981), Squire (1981) etc.

  5. See works of Shapiro and Stiglitz (1984), Pisauro (1991), Agell and Lundborg (1992, 1995), Gupta (2000), Gupta and Gupta (2001), Chaudhuri and Banerjee (2008) etc.

  6. Lai et. al. (2002) is the only exception in this context. However, in Lai et. al. (2002), we find an intertemporal analysis without capital accumulation. One can not analyse the effect of capital income taxation using this framework.

  7. See, for example, Bouche et al. (2019), Gupta and Ray Barman (2010), Economides and Philippopoulos (2008), Bovenverg and Smulders (1995) etc.

  8. See, for example, Greiner (2005), Smulders and Gradus (1996), Gradus and Smulders (1993), Gruver (1976), Forster (1973) etc.

  9. See, for example, Gupta and Barman (2009, 2010), Economides and Philippopoulos (2008), Greiner (2005) etc.

  10. We do not consider the efficiency aspect and thus fail to find out the properties of optimum tax policy. In a future work we may find out what determines the optimum tax rate.

  11. We develop an exogenous saving growth model in Sect. 4 of this paper. So the derivation of efficiency function with an exogenous value of \(\mathrm{s}\) is consistent with the assumption made in that section.

  12. In fact, Agell and Lundborg (1992,1995) point out a similar negative effect of non-wage income on labour efficiency without providing any formal micro foundation.

  13. See works of Shapiro and Stiglitz (1984), Pisauro (1991), Agell and Lundborg (1992, 1995), Gupta (2000), Gupta and Gupta (2001) and Chaudhuri and Banerjee (2008) etc.

  14. Our efficiency function is a special case of the more general efficiency function considered in the fair wage hypothesis developed by Agell and Lundborg (1992, 1995) where rental rate on capital also appears as an argument. In Sect. 2 of this paper, we have shown that an increase in non wage income has a negative (zero) effect on labour efficiency when the worker is risk averter (neutral). If the worker is risk averter, then labour efficiency should also vary inversely with the rental rate on capital as well as with the stock of capital owned by the worker. We ignore this problem simply assuming that the worker is risk neutral.

  15. Concavity can not be proved in the derivation of the efficiency function in Sect. 2. It is a simplifying assumption.

  16. Detailed derivation is given in “Appendix B”.

  17. This is a sufficient condition but not a necessary one \(\Delta \) may be positive even if \(\left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right) \le 0.\)

  18. Alternatively, one may think of a proportional tax on total output or on labour income. The implication of using alternatives is discussed in the Conclusion section of this paper.

  19. For example, see Ansuategi and Marsiglio (2017), Huang and Cai (1994).

  20. This is a simplifying assumption. If labour force grows at a constant rate, this is not a problem.

  21. This assumption is borrowed from Gupta and Ray Barman (2010), Liddle (2001), Oueslati (2002), Hartwick (1991), Smulders and Gradus (1996), Byrne (1997), Gruver (1976), Dinda (2005), etc.

  22. Detailed derivation is given in the “Appendix D”.

  23. Derivations of Eqs. (24) and (26) are shown in “Appendix E.1”.

  24. Derivation of Eq. (27) is shown in “Appendix E.1”.

  25. The relevant stability analysis is shown in “Appendix E.2”.

  26. Derivation is shown in “Appendix E.3”.

  27. See Benhabib and Perli (1994).

References

  • Agell J, Lundborg P (1992) Fair wages, involuntary unemployment and tax policy in the simple general equilibrium model. J Public Econ 47:299–320

    Article  Google Scholar 

  • Agell J, Lundborg P (1995) Fair wages in the open economy. Economica 62:325–351

    Article  Google Scholar 

  • Akerlof G (1984) Gift exchange and efficiency-wage theory: four views. Am Econ Rev 74:79–83

    Google Scholar 

  • Akerlof GA, Yellen JL (1990) The fair wage-effort hypothesis and unemployment. Q J Econ 105:255–283

    Article  Google Scholar 

  • Albert M, Meckl J (2001) Green tax reform and two-component unemployment: double dividend or double loss? J Inst Theor Econ 157:265–281

    Article  Google Scholar 

  • Alexopoulos M (2003) Growth and unemployment in a shirking efficiency wage model. Can J Econ 36:728–746

    Article  Google Scholar 

  • Ansuategi A, Marsiglio S (2017) Is environmental protection expenditure benefical for the environment? Rev Dev Econ 21:786–802

    Article  Google Scholar 

  • Benarroch M, Weder R (2006) Intra-industry trade in intermediate products, pollution and internationally increasing returns. J Environ Econ Manag 52:675–689

    Article  Google Scholar 

  • Benhabib J, Perli R (1994) Uniqueness and indeterminacy: on the dynamics of endogenous growth. J Econ Theory 63:113–142

    Article  Google Scholar 

  • Bertinelli L, Strobl E, Zou B (2008) Economic development and environmental quality: a reassessment in light of nature’s self-regeneration capacity. Ecol Econ 66:371–378

    Article  Google Scholar 

  • Bouche M, Miguel CD (2019) Optimal fiscal policy in a model with inherited aspirations and habit formation. J Public Econ Theory 21:1309–1331

    Article  Google Scholar 

  • Bovenberg L, Smulders S (1995) Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model. J Public Econ 57:369-391A

    Article  Google Scholar 

  • Brecher RA, Chen Z, Choudhuri EH (2002) Unemployment and growth in the long run: an efficiency wage model with optimal savings. Int Econ Rev 43:875–894

    Article  Google Scholar 

  • Brock WA, Taylor MS (2005) Economic growth and the environment: a review of theory and empirics. In: Aghion P, Durlauf S (eds) Handbook of Economic Growth, vol 1. Elsevier, Amsterdam, Netherlands

    Google Scholar 

  • Byrne MM (1997) Is growth a dirty word? pollution, abatement and endogenous growth. J Dev Econ 54:261–281

    Article  Google Scholar 

  • Calvo G (1979) Quasi-Walrasian theories of unemployment. Am Econ Rev 69:102–107

    Google Scholar 

  • Chaudhuri S, Banerjee D (2008) Consumption efficiency hypothesis and the HOS model: some counterintuitive results. Res Econ 62:64–71

    Article  Google Scholar 

  • Di Vita G (2008) Capital accumulation, interest rate and the income-pollution pattern: a simple model. Econ Model 25:225–235

    Article  Google Scholar 

  • Dinda S (2005) A theoretical basis for the environmental Kuznets curve. Ecol Econ 53:403–413

    Article  Google Scholar 

  • Economides G, Philippopoulos A (2008) Growth enhancing policy is the means to sustain the environment. Rev Econ Dyn 11:207–219

    Article  Google Scholar 

  • Elbasha EH, Roe TL (1996) On endogenous growth: the implications of environmental externalities. J Environ Econ Manag 31:240–268

    Article  Google Scholar 

  • Forster BA (1973) Optimal capital accumulation in a polluted environment. South Econ J 39:544–547

    Article  Google Scholar 

  • Gradus R, Smulders S (1993) The trade-off between environmental care and long-term growth: pollution in three prototype growth models. J Econ 58:25–51

    Article  Google Scholar 

  • Greiner A (2005) fiscal policy in an endogeneous growth model with public capital and pollution. Jpn Econ Rev 56:67–84

    Article  Google Scholar 

  • Gruver G (1976) Optimal investment and pollution in a neoclassical growth context. J Environ Econ Manag 5:165–177

    Article  Google Scholar 

  • Gupta MR (2000) Duty free zone and unemployment in fair wage model. Keio Econ Stud 37:33–44

    Google Scholar 

  • Gupta MR, Gupta K (2001) Tax policies and unemployment in a dynamic efficiency wage model. Hitotsubashi J Econ 42:65–79

    Google Scholar 

  • Gupta MR, Ray Barman T (2009) Fiscal policies, environmental pollution and economic growth. Econ Model 26:1018–1028

    Article  Google Scholar 

  • Gupta MR, Ray Barman T (2010) Health, infrastructure, environment and endogenous growth. J Macroecon 32:657–673

    Article  Google Scholar 

  • Hartman R, Kwon O-S (2005) Sustainable growth and the environmental Kuznets curve. J Econ Dyn Control 29:1701–1736

    Article  Google Scholar 

  • Hartwick JM (1991) Degradation of environmental capital and national accounting procedures. Eur Econ Rev 35:642–649

    Article  Google Scholar 

  • Heutel G (2012) How should environmental policy respond to business cycles? optimal policy under persistent productivity shocks. Rev Econ Dyn 15:244–264

    Article  Google Scholar 

  • Huang CH, Cai D (1994) Constant-returns endogenous growth with pollution control. Environ Resource Econ 4:383–400

    Article  Google Scholar 

  • Itaya J-I (2008) can environmental taxation stimulate growth? the role of indeterminacy in endogenous growth models with environmental externalities. J Econ Dyn Control 32:1156–1180

    Article  Google Scholar 

  • Kaldor N (1957) A model of economic growth. Econ J 67:591–624

    Article  Google Scholar 

  • Lai C, Yang C, Kao M (2002) Abatement expenditure acts as an environmental investment: an efficiency wage viewpoint. Am Econ 46:66–70

    Google Scholar 

  • Le Kama AD (2001) Sustainable growth, renewable resources and pollution. J Econ Dyn Control 25:1911–1918

    Article  Google Scholar 

  • Liddle B (2001) Free trade and the environment-development system. Ecol Econ 39:21–36

    Article  Google Scholar 

  • Managi S (2006) Are there increasing returns to pollution abatement? empirical analytics of the environmental Kuznets curve in pesticides. Ecol Econ 58:617–636

    Article  Google Scholar 

  • Mitra A (1998) Employment in the informal sector. Indian J Labour Econ 41:475–482

    Google Scholar 

  • Nordhaus WD (1992) The 'DICE' Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming. Cowles Foundation Discussion Papers 1009, Cowles Foundation for Research in Economics, Yale University.

  • Oueslati W (2002) Environmental policy in an endogenous growth model with human capital and endogenous labour supply. Econ Model 19:487–507

    Article  Google Scholar 

  • Papola TS (1981) Urban informal sector in a developing economy. Vikas Publishing House Pvt. Ltd., New Delhi, India

    Google Scholar 

  • Pisauro G (1991) The effects of taxes on labour in efficiency wage models. J Public Econ 46(3):329–345

    Article  Google Scholar 

  • Salop SC (1979) A model of the natural rate of unemployment. Am Econ Rev 69:117–125

    Google Scholar 

  • Schneider K (1997) Involuntary unemployment and environmental policy: the double dividend hypothesis. Scand J Econ 99:45–59

    Article  Google Scholar 

  • Selden TM, Song D (1995) Neoclassical growth, the J curve for abatement, and the inverted U curve for pollution. J Environ Econ Manag 29:162–168

    Article  Google Scholar 

  • Sethuraman SV (ed) (1981T) The urban informal sector in developing countries: employment, poverty and environment. ILO, Geneva

    Google Scholar 

  • Shapiro C, Stiglitz J (1984) Equilibrium unemployment as a worker-discipline device. Am Econ Review 74(3):433–444

    Google Scholar 

  • Smulders S (1999) Endogenous growth theory and the environment. In: Van den Bergh J (ed) The handbook of environmental and resource economics. Edward Elgar, Cheltenham

    Google Scholar 

  • Smulders S, Gradus R (1996) Pollution abatement and long-term growth. Eur J Polit Econ 12:505–532

    Article  Google Scholar 

  • Solow RM (1956) A contribution to the theory of economic growth. Q J Econ 70:65–94

    Article  Google Scholar 

  • Solow RM (1979) Another possible source of wage stickiness. J Macroecon 1:79–82

    Article  Google Scholar 

  • Squire L (1981) Employment policy in developing countries: a survey of issues and evidences. Oxford University Press, New York

    Google Scholar 

  • Summers LH (1988) Relative wages, efficiency wages, and Keynesian unemployment. Am Econ Rev 78:383–388

    Google Scholar 

  • World Health Organization (2009) Preventing Disease Through Healthy Environments: Towards an Estimate of the Environmental Burden of Disease. Available online: http://www.who.int/quantifying_ehimpacts/publications/preventingdisease/en/index.html. Accessed 23 June 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Brata Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix (A)

The production function is given by

$${\text{X}} = {\text{F}}\left( {{\text{eL}},{\text{ K}}} \right);$$

where

$$ {\text{e}} = {\text{e}}\left( {{\text{w}},{\text{u}},{\text{E}}} \right) $$

is the labour efficiency function.

Profit maximizing conditions of a competitive firm are given by

$$ {\text{F}}_{1} = \frac{{\text{w}}}{{\text{e}}} $$

and \({\text{F}}_{2} = {\text{r}}\).

Since the production function satisfies constant returns to scale, from Eulers theorem, we have

$${\text{X}} = {\text{F}}_{1} {\text{ eL}} + {\text{F}}_{2} {\text{K}}.$$

So, using profit maximizing conditions, we have

$$ {\text{X}} = \frac{{\text{w}}}{{\text{e}}}{\text{ eL}} + {\text{rK}} $$
$$ \Rightarrow \frac{{\text{w}}}{{\text{e}}}{\text{ a}}_{{\text{L}}} + {\text{ra}}_{{\text{K}}} = 1 $$

where \({\text{a}}_{{\text{L}}} = \frac{{{\text{eL}}}}{{\text{X}}}\) and \({\text{a}}_{{\text{K}}} = \frac{{\text{K}}}{{\text{X}}}\) are the two input of output coefficients. Since the production function satisfies CRS, \({\text{a}}_{{\text{L}}}\) and \({\text{a}}_{{\text{K}}}\) are functions of capital-labour ratio, \(\frac{{\text{K}}}{{{\text{eL}}}}\). Again profit maximizing conditions ensure that \(\frac{{\text{K}}}{{{\text{eL}}}}\) is a function of factor price ratio, \(\frac{{{\raise0.7ex\hbox{${\text{w}}$} \!\mathord{\left/ {\vphantom {{\text{w}} {\text{e}}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\text{e}}$}}}}{{\text{r}}}\). Hence \({\text{a}}_{{\text{L}}}\) and \({\text{a}}_{{\text{K}}}\) are also functions of \(\frac{{{\raise0.7ex\hbox{${\text{w}}$} \!\mathord{\left/ {\vphantom {{\text{w}} {\text{e}}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\text{e}}$}}}}{{\text{r}}}\).

Appendix (B)

From Eqs. (1) and (2), we have

$$ {\uptheta }_{{\text{L}}} {\hat{\text{w}}} - {\uptheta }_{{\text{L}}} {\hat{\text{e}}} + {\uptheta }_{{\text{K}}} {\hat{\text{r}}} = 0; $$
(28)

and

$$ {\hat{\text{w}}} - {\hat{\text{e}}} + {\upvarepsilon }_{{\text{u}}} {\hat{\text{u}}} = - {\upvarepsilon }_{{\text{E}}} {\hat{\text{E}}}{.} $$
(29)

From Eq. (3), we obtain

$$ \frac{{\partial^{2} {\text{e}}}}{{\partial {\text{w}}^{2} }}\frac{{{\text{dw}}}}{{\text{w}}}\frac{{\left( {\text{w}} \right)^{2} }}{{\text{e}}} + \frac{{\partial {\text{e}}}}{{\partial {\text{w}}}}\frac{{{\text{dw}}}}{{\text{w}}}\frac{{\text{w}}}{{\text{e}}} - \frac{{\partial {\text{e}}}}{{\partial {\text{w}}}}\frac{{\text{w}}}{{{\text{e}}^{2} }}\left[ {\frac{{\partial {\text{e}}}}{{\partial {\text{w}}}}\frac{{{\text{dw}}}}{{\text{w}}}{\text{w}} + \frac{{\partial {\text{e}}}}{{\partial {\text{u}}}}\frac{{{\text{du}}}}{{\text{u}}}{\text{u}} + \frac{{\partial {\text{e}}}}{{\partial {\text{E}}}}\frac{{{\text{dE}}}}{{\text{E}}}{\text{E}}} \right] = 0. $$
(30)

Using Eqs. (3) and (30), we have

$$ {\text{e}}_{11} \frac{{\left( {\text{w}} \right)^{2} }}{{\text{e}}}{\hat{\text{w}}} - {\upvarepsilon }_{{\text{u}}} {\hat{\text{u}}} = {\upvarepsilon }_{{\text{E}}} {\hat{\text{E}}}{.} $$
(31)

where \({\upvarepsilon }_{{\text{u}}} = \frac{{\partial {\text{e}}}}{{\partial {\text{u}}}}\frac{{\text{u}}}{{\text{e}}} > 0\), \({\upvarepsilon }_{{\text{E}}} = \frac{{\partial {\text{e}}}}{{\partial {\text{E}}}}\frac{{\text{E}}}{{\text{e}}} > 0\) and \({\text{e}}_{11} = \frac{{\partial^{2} {\text{e}}}}{{\partial {\text{w}}^{2} }} < 0\).

From Eq. (4), we have

$$ {\uptheta }_{{\text{L}}} {{\sigma \hat{\text{W}}}} - {\uptheta }_{{\text{L}}} {{\sigma \hat{\text{e}}}} - {\uptheta }_{{\text{L}}} {{\sigma \hat{\text{r}}}} + {\hat{\text{X}}} = {\hat{\text{K}}}{.} $$
(32)

From Eq. (5), we obtain

$$ - {\uptheta }_{{\text{K}}} {{\sigma \hat{\text{W}}}} - \left( { - {\uptheta }_{{\text{K}}} {\upsigma } + 1} \right){\hat{\text{e}}} + {\uptheta }_{{\text{K}}} {{\sigma \hat{\text{r}}}} + \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}{\hat{\text{u}}} + {\hat{\text{X}}} = 0. $$
(33)

Using Eqs. (28), (29) and equations (31) to (33), we have

$$ {\hat{\text{w}}} = \frac{1}{\Delta }\left\{ { - {\uptheta }_{{\text{K}}} {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}{\hat{\text{E}}} + {\uptheta }_{{\text{K}}} {\upvarepsilon }_{{\text{u}}} {\hat{\text{K}}}} \right\}. $$
(34)
$$ {\hat{\text{e}}} = \frac{{\left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)}}{\Delta }\left\{ { - {\uptheta }_{{\text{K}}} {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}{\hat{\text{E}}} + {\uptheta }_{{\text{K}}} {\upvarepsilon }_{{\text{u}}} {\hat{\text{K}}}} \right\}. $$
(35)
$$ {\hat{\text{r}}} = \frac{1}{\Delta }\left[ { - {\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}{\hat{\text{E}}} - {\upvarepsilon }_{{\text{u}}} {\hat{\text{K}}}} \right)} \right]. $$
(36)
$$ {\hat{\text{u}}} = \frac{1}{\Delta }\left[ { - {\upvarepsilon }_{{\text{E}}} \left\{ { - {\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \left. { + {\uptheta }_{{\text{K}}} \left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)} \right\}{\hat{\text{E}}} + {\uptheta }_{{\text{K}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}} {{\hat{\text{K}}}}\right.} \right]; $$
(37)

and

$$ {\hat{\text{X}}} = \frac{1}{\Delta }\left[ { - {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} {\uptheta }_{{\text{L}}} {\upsigma }\frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}{\hat{\text{E}}} + \left\{ { - {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{K}}} \left( {{\upvarepsilon }_{{\text{u}}} {\upsigma } + \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}} \right) + {\uptheta }_{{\text{K}}} {\upvarepsilon }_{{\text{u}}} \left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} {{\hat{\text{K}}}} \right)} \right\}} \right]; $$
(38)

where,

$$ \Delta = - {\upvarepsilon }_{{\text{u}}} {\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}} + {\upvarepsilon }_{{\text{u}}} {\uptheta }_{{\text{K}}} \left\{ {\left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right) - {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\frac{{\text{u}}}{{{\upvarepsilon }_{{\text{u}}} \left( {1 - {\text{u}}} \right)}}} \right\}. $$

Equations (34) to (38) are same as Eqs. (6) to (10) in the body of the paper.

Appendix (C)

3.1 C.1 Slopes of stationary loci

We derive the slopes of two stationary loci \(\dot{\mathrm{K}}=0\) and \(\dot{\mathrm{E}}=0\) in this section.

Equations (12) and (13) presented below describe the rate of change in capital stock and the rate of change in environmental quality respectively.

$$ {\dot{\text{K}}} = {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{rK}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{wL}} - {{\updelta K;}} $$
(12)

and

$$ {\dot{\text{E}}} = {{\uptau \text{rK}}} - {\upalpha \text{X}} + {\uppi \text{E}}{.} $$
(13)

We have \({\dot{\text{K}}} = {\dot{\text{E}}} = 0\); and hence, from Eqs. (12) and (13), we find that

$$ {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{rK}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{wL}} = {{\updelta K;}} $$
(14)

and

$$ {{\uptau \text{rK}}} = {\upalpha \text{X}} - {\uppi \text{E}}{.} $$
(15)

From Eq. (14), we have

$$ \begin{aligned} & \left\{ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{r}} + {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{K}}}} - {\text{s}}_{{\text{w}}} {\text{wL}}\frac{{\partial {\text{u}}}}{{\partial {\text{K}}}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{L}}\frac{{\partial {\text{w}}}}{{\partial {\text{K}}}} - {\updelta }} \right\}{\text{dK}} \hfill \\ & = - \left\{ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{E}}}} - {\text{s}}_{{\text{w}}} {\text{wL}}\frac{{\partial {\text{u}}}}{{\partial {\text{E}}}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{L}}\frac{{\partial {\text{w}}}}{{\partial {\text{E}}}}} \right\}{\text{dE}} \hfill \\ \end{aligned} $$
(39)

Using Eqs. (14) and (39), we have

$$ \begin{aligned} &\left\{ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{K}}}} - {\text{s}}_{{\text{w}}} \frac{{{\text{wL}}}}{{\text{K}}}\left( {1 - {\text{u}}} \right) - {\text{s}}_{{\text{w}}} {\text{wL}}\frac{{\partial {\text{u}}}}{{\partial {\text{K}}}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{L}}\frac{{\partial {\text{w}}}}{{\partial {\text{K}}}}} \right\}{\text{dK}}\;\;\;\left( {\text{using steady state condition}} \right) \hfill \\ & = - \left\{ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{E}}}} - {\text{s}}_{{\text{w}}} {\text{wL}}\frac{{\partial {\text{u}}}}{{\partial {\text{E}}}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{L}}\frac{{\partial {\text{w}}}}{{\partial {\text{E}}}}} \right\}{\text{dE}} \hfill \\ & \mathop \Rightarrow \limits^{ } \left[ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right)\frac{{{\text{rK}}}}{{\text{K}}}\frac{{{\hat{\text{r}}}}}{{{\hat{\text{K}}}}} - {\text{s}}_{{\text{w}}} \left\{ {\frac{{{\text{wL}}}}{{\text{K}}}\left( {1 - {\text{u}}} \right) + \frac{{{\text{wL}}}}{{\text{K}}}{\text{u}}\frac{{{\hat{\text{u}}}}}{{{\hat{\text{K}}}}} - \left( {1 - {\text{u}}} \right)\frac{{{\text{wL}}}}{{\text{K}}}\frac{{{\hat{\text{w}}}}}{{{\hat{\text{K}}}}}} \right\}} \right]{\text{dK}} \hfill \\ & = - \left[ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right)\frac{{{\text{rK}}}}{{\text{E}}}\frac{{{\hat{\text{r}}}}}{{{\hat{\text{E}}}}} + {\text{s}}_{{\text{w}}} \left\{ {\frac{{{\text{wL}}}}{{\text{E}}}\left( {1 - {\text{u}}} \right)\frac{{{\hat{\text{w}}}}}{{{\hat{\text{E}}}}} - \frac{{{\text{wL}}}}{{\text{E}}}{\text{u}}\frac{{{\hat{\text{u}}}}}{{{\hat{\text{E}}}}}} \right\}} \right]. \hfill \\ \end{aligned} $$
(40)

Using Eqs. (6), (8), (9) and (40), we obtain

$$ \begin{aligned}& \Rightarrow \left[ {{{\rm{s}}_{\rm{p}}}\left( {1 - { {\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{ {\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{ {\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left\{ {\left( {1 - {\rm{u}}} \right) + {\rm{u}}\frac{1}{\Delta }{{ {\uptheta }}_{\rm{K}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} - \left( {1 - {\rm{u}}} \right)\frac{{{{ {\uptheta }}_{\rm{K}}}{{ {\upvarepsilon }}_{\rm{u}}}}}{\Delta }} \right\}} \right]{\rm{dK}} \\& = - \left[ { - {{\rm{s}}_{\rm{p}}}\left( {1 - { {\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{E}}}\frac{1}{\Delta }{{ {\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{ {\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right. \\& \left. { +\, {{\rm{s}}_{\rm{w}}}\left[ { - \frac{{{\rm{wL}}}}{{\rm{E}}}\left( {1 - {\rm{u}}} \right)\frac{{{{{\uptheta }}_{\rm{K}}}{{ {\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}}}{\Delta }} \right.\left. { + \frac{{{\rm{wL}}}}{{\rm{E}}}{\rm{u}}\frac{1}{\Delta }{{ {\upvarepsilon }}_{\rm{E}}}\left\{ { - { {\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left. { + {{ {\uptheta }}_{\rm{K}}}\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right\}} \right.} \right]} \right]{\rm{dE}} \\& \Rightarrow \left[ {{{\rm{s}}_{\rm{p}}}\left( {1 - { {\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{ {\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{ {\upvarepsilon }}_{\rm{u}}}} \right. - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\left\{ {1 - \frac{1}{\Delta }\left\{ {{{ {\upvarepsilon }}_{\rm{u}}}{{ {\uptheta }}_{\rm{K}}}\left( {1 - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\frac{{\rm{u}}}{{{{ {\upvarepsilon }}_{\rm{u}}}\left( {1 - {\rm{u}}} \right)}}} \right)} \right.} \right. \\& \left. {\left. {\left. { - {{ {\upvarepsilon }}_{\rm{u}}}{ {\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} + {{ {\upvarepsilon }}_{\rm{u}}}{{ {\uptheta }}_{\rm{K}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} + {{ {\upvarepsilon }}_{\rm{u}}}{ {\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} - {{ {\upvarepsilon }}_{\rm{u}}}{{ {\uptheta }}_{\rm{K}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right\}} \right\}} \right]{\rm{dK}} \\& = - \left[ { - {{\rm{s}}_{\rm{p}}}\left( {1 - { {\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{E}}}\frac{1}{\Delta }{{ {\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{ {\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right. \\& + {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{E}}}\frac{1}{\Delta }\left[ { - {{ {\uptheta }}_{\rm{K}}}{{ {\upvarepsilon }}_{\rm{E}}}{\rm{u}}} \right.\left. { + {\rm{u}}{{ {\upvarepsilon }}_{\rm{E}}}\left\{ { - { {\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left. { + {{ {\uptheta }}_{\rm{K}}}\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right\}} \right.} \right]{\rm{dE}}\\& \Rightarrow \left[ {{{\rm{s}}_{\rm{p}}}\left( {1 - { {\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{ {\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{ {\upvarepsilon }}_{\rm{u}}}} \right. - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\left\{ {1 - \frac{1}{\Delta }\left\{ { - {{ {\upvarepsilon }}_{\rm{u}}}{ {\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} + {{ {\upvarepsilon }}_{\rm{u}}}{{ {\uptheta }}_{\rm{K}}}\left\{ {\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right.} \right.} \right.\\& \left. {\left. {\left. {\left. { - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\frac{{\rm{u}}}{{{{ {\upvarepsilon }}_{\rm{u}}}\left( {1 - {\rm{u}}} \right)}}} \right\} + {{ {\upvarepsilon }}_{\rm{u}}}{ {\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} - {{{\upvarepsilon }}_{\rm{u}}}{{{\theta }}_{\rm{K}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right\}} \right\}} \right]{\rm{dK}}\\& = - \left[ { - {{\rm{s}}_{\rm{p}}}\left( {1 - {{\tau }}} \right)\frac{{{\rm{rK}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\theta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right.\\& + {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{E}}}\frac{1}{\Delta }\left[ { - {{{\theta }}_{\rm{K}}}{{{\upvarepsilon }}_{\rm{E}}}{\rm{u}}} \right.\left. { + {\rm{u}}{{{\upvarepsilon }}_{\rm{E}}}\left\{ { - {{\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left. { + {{{\theta }}_{\rm{K}}}\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right\}} \right.} \right]{\rm{dE}}\\& \Rightarrow \left[ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\tau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\theta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}} \right. - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\left\{ {1 - \frac{1}{\Delta }\left\{ {\Delta \left. {\left. {\left. { - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\theta }}_{\rm{K}}}} \right)} \right\}} \right\}} \right]{\rm{dK}}} \right.} \right.\\& (from \,\,\, definition \,\,\, of \,\,\, \Delta \,\,\, from \,\,\, static \,\,\, model)\\& = - \left[ { - {{\rm{s}}_{\rm{p}}}\left( {1 - {{\tau }}} \right)\frac{{{\rm{rK}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right.\left. { + {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{E}}}{\rm{u}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right]{\rm{dE}}\\& \Rightarrow \left[ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\tau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}} \right. - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\left\{ {1 - 1 + \frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left. {\left. {\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}} \right]{\rm{dK}}} \right.\\& = - \left[ { - {{\rm{s}}_{\rm{p}}}\left( {1 - {{\tau }}} \right)\frac{{{\rm{rK}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right.\left. { + {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{E}}}{\rm{u}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right]{\rm{dE}} \\& \Rightarrow \left[ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\tau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}} \right. - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left. {\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right]{\rm{dK}}\\& = - \left[ { - {{\rm{s}}_{\rm{p}}}\left( {1 - {{\tau }}} \right)\frac{{{\rm{rK}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right.\left. { + {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{E}}}{\rm{u}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right]{\rm{dE}} \\& \Rightarrow \left[ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\tau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}} \right. - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left. {\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right]{\rm{dK}}\\& = \left[ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\tau }}} \right)\frac{{{\rm{rK}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right.\left. { - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{E}}}{\rm{u}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right]{\rm{dE}}\\& {\left. { \Rightarrow \frac{{{\rm{dE}}}}{{{\rm{dK}}}}} \right|_{{ {\dot \rm {K}}} = 0}} = \frac{{\rm{E}}}{{\rm{K}}}\frac{{{{{\upvarepsilon }}_{\rm{u}}}}}{{{{{\upvarepsilon }}_{\rm{E}}}}}\frac{{\left( {1 - {\rm{u}}} \right)}}{{\rm{u}}}\frac{{\left[ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\tau }}} \right){\rm{r}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}\frac{1}{{\rm{E}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\frac{1}{{\left( {1 - {\rm{u}}} \right)}}} \right. - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{{\rm{KE}}}}\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left. {\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right]}}{{\left[ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\tau }}} \right){\rm{r}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}\frac{1}{{\rm{E}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\frac{1}{{\left( {1 - {\rm{u}}} \right)}}} \right. - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{{\rm{KE}}}}\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left. {\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right]}}\\& \Rightarrow {\left. {\frac{{{\bf{dE}}}}{{{\bf{dK}}}}} \right|_{{\bf{\dot K}} = 0}} = \frac{{\bf{E}}}{{\bf{K}}}\frac{{{{\bf{\varepsilon }}_{\bf{u}}}}}{{{{\bf{\varepsilon }}_{\bf{E}}}}}\frac{{\left( {1 - {\bf{u}}} \right)}}{{\bf{u}}}.\end{aligned}$$

So the slope of \(\dot{\mathrm{K}}=0\) stationary locus is positive and is independent of the value of \(\upsigma \).

From Eq. (15), we have

$$ \begin{aligned} &\left( {{\uptau \text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{E}}}} - {\upalpha }\frac{{\partial {\text{X}}}}{{\partial {\text{E}}}} + {\uppi }} \right){\text{dE}} = - \left( {{\uptau \text{r}} + {\uptau \text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{K}}}} - {\upalpha }\frac{{\partial {\text{X}}}}{{\partial {\text{K}}}}} \right){\text{dK}} \hfill \\ & \mathop \Rightarrow \limits^{ } \left( {\frac{{{\uptau \text{X}}}}{{\text{r}}}\frac{{\text{r}}}{{\text{E}}}\frac{{{\hat{\text{r}}}}}{{{\hat{\text{E}}}}} - {\upalpha }\frac{{\text{X}}}{{\text{E}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}} + {\uppi }} \right){\text{dE}} = - \left( {{\uptau \text{r}} + \frac{{{\uptau \text{K}}}}{{\text{r}}}\frac{{\text{r}}}{{\text{K}}}\frac{{{\hat{\text{r}}}}}{{{\hat{\text{K}}}}} - \frac{{{\upalpha \text{X}}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}} \right){\text{dK}} \hfill \\ & \mathop \Rightarrow \limits^{ } \left\{ {\left( {\frac{{{\upalpha \text{X}}}}{{\text{E}}} - {\uppi }} \right)\left( {\frac{{{\hat{\text{r}}}}}{{{\hat{\text{E}}}}} - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}}} \right) + {\uppi }\left( {1 - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}}} \right)} \right\}{\text{dE}} = - \left\{ {\left( {\frac{{{\upalpha \text{X}} - {\uppi \text{E}}}}{{\text{K}}}} \right)\left( {1 + \frac{{{\hat{\text{r}}}}}{{{\hat{\text{K}}}}} - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}} \right) - \frac{{{\uppi \text{E}}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}} \right\}{\text{dK}}{.} \hfill \\ \end{aligned} $$
(41)

Using Eqs. (15) and (41), we have

$$ \mathop \Rightarrow \limits^{ } \left\{ {\left( {\frac{{{\alpha X}}}{{\text{E}}} - {\uppi }} \right)\left( {\frac{{{\hat{\text{r}}}}}{{{\hat{\text{E}}}}} - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}}} \right) + {\uppi }\left( {1 - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}}} \right)} \right\}{\text{dE}} = \left\{ { - \left( {\frac{{{\upalpha \text{X}} - {\uppi \text{E}}}}{{\text{K}}}} \right)\left( {1 + \frac{{{\hat{\text{r}}}}}{{{\hat{\text{K}}}}} - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}} \right) + \frac{{{\uppi \text{E}}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}} \right\}{\text{dK}}{.} $$
(42)

Using Eqs. (8), (10) and (42), we obtain

$$\begin{aligned} &\Rightarrow \left\{ {\left( {\frac{{{{\upalpha \text{X}}}}}{{\rm{E}}} - {{\uppi }}} \right)\left( { - \frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}} + \frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}{{{\uptheta }}_{\rm{L}}}{{\upsigma }}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right) + {{\uppi }}\left( {1 - \frac{{{\hat{\rm X}}}}{{{\hat{\rm E}}}}} \right)} \right\}{\rm{dE}}\\& = \left[ { - \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)\left\{ {1 + \frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - \frac{1}{\Delta }\left\{ { - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{k}}}\left( {{{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }} + \frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right)} \right. + {{{\uptheta }}_{\rm{K}}}\left. {{{{\upvarepsilon }}_{\rm{u}}}\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right\}} \right\}} \right.\\& \quad \left. { + \frac{{{\uppi \text{E}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}} \right]{\rm{dK}}\\& \Rightarrow \left\{ {\left( {\frac{{{{\upalpha \text{X}}}}}{{\rm{E}}} - {{\uppi }}} \right)\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}\left( {{{\upsigma }} - 1} \right) + {{\uppi }}\left( {1 - \frac{{{\hat{\rm X}}}}{{{\hat{\rm E}}}}} \right)} \right\}{\rm{dE}}\\& = \left[ { - \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)} \right.\left[ {1 - \frac{1}{\Delta }\left[ {{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{K}}}\left\{ {\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right.} \right.} \right.\left. { - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\frac{{\rm{u}}}{{{{{\upvarepsilon }}_{\rm{u}}}\left( {1 - {\rm{u}}} \right)}}} \right\}\\& \quad - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{k}}}{{\upsigma }}\left. {\left. { - {{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}} \right]} \right] + \left. {\frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}} \right]{\rm{dK}}\\& \Rightarrow \left\{ {\left( {\frac{{{{\upalpha X}}}}{{\rm{E}}} - {{\uppi }}} \right)\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}\left( {{{\upsigma }} - 1} \right) + {{\uppi }}\left( {1 - \frac{{{\hat{\rm X}}}}{{{\hat{\rm E}}}}} \right)} \right\}{\rm{dE}}\\& = \left[ { - \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)} \right.\left[ {1 - \frac{1}{\Delta }\left[ {{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{K}}}\left\{ {\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right.} \right.} \right.\left. { - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\frac{{\rm{u}}}{{{{{\upvarepsilon }}_{\rm{u}}}\left( {1 - {\rm{u}}} \right)}}} \right\} - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }} + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }}\\& \quad - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{k}}}{{\upsigma }}\left. {\left. { - {{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}} \right]} \right] + \left. {\frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}} \right]{\rm{dK}}\\& \Rightarrow \left\{ {\left( {\frac{{{{\upalpha \text{X}}}}}{{\rm{E}}} - {{\uppi }}} \right)\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}\left( {{{\upsigma }} - 1} \right) + {{\uppi }}\left( {1 - \frac{{{\hat{\rm X}}}}{{{\hat{\rm E}}}}} \right)} \right\}{\rm{dE}}\\& = \left[ { - \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)} \right.\left[ {1 - \frac{1}{\Delta }\left[ \Delta \right.} \right. + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }}\left. {\left( {1 - {{{\uptheta }}_{\rm{K}}}} \right)\left. { - {{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}} \right]} \right] + \left. {\frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}} \right]{\rm{dK}}\\& (from \,\,\, definition \,\,\, of \,\,\, \Delta \,\,\, from \,\,\, static \,\,\, model)\\& \Rightarrow \left\{ {\left( {\frac{{{{\upalpha \text{X}}}}}{{\rm{E}}} - {{\uppi }}} \right)\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}\left( {{{\upsigma }} - 1} \right) + {{\uppi }}\left( {1 - \frac{{{\hat{\rm X}}}}{{{\hat{\rm E}}}}} \right)} \right\}{\rm{dE}}\\& = \left[ { - \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)} \right.\left[ {1 - \frac{1}{\Delta }\left[ \Delta \right.} \right. + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }}\left. {{{{\uptheta }}_{\rm{L}}}\left. { - {{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}} \right]} \right] + \left. {\frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}} \right]{\rm{dK}}\\& \Rightarrow \left\{ {\left( {\frac{{{{\upalpha \text{X}}}}}{{\rm{E}}} - {{\uppi }}} \right)\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}\left( {{{\upsigma }} - 1} \right) + {{\uppi }}\left( {1 - \frac{{{\hat{\rm X}}}}{{{\hat{\rm E}}}}} \right)} \right\}{\rm{dE}}\\& = \left[ { - \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)} \right.\left[ {1 - \frac{1}{\Delta }\left[ \Delta \right.} \right. + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }}\left. {\left. {{{{\uptheta }}_{\rm{L}}}\left( {{{\upsigma }} - 1} \right)} \right]} \right] + \left. {\frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}} \right]{\rm{dK}}\\& \Rightarrow \left\{ {\left( {\frac{{{{\upalpha \text{X}}}}}{{\rm{E}}} - {{\uppi }}} \right)\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}\left( {{{\upsigma }} - 1} \right) + {{\uppi }}\left( {1 - \frac{{{\hat{\rm X}}}}{{{\hat{\rm E}}}}} \right)} \right\}{\rm{dE}}\\& = \left\{ {\left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)\frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{L}}}\left( {{{\upsigma }} - 1} \right) + \frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}} \right\}{\rm{dK}}\\& {\left. {\frac{{{\rm{dE}}}}{{{\rm{dK}}}}} \right|_{{\dot{\rm E}} = 0}} = \frac{{\left\{ {\left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)\frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{L}}}\left( {{{\upsigma }} - 1} \right) + \frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}} \right\}}}{{\left\{ {\left( {\frac{{{{\upalpha \text{X}}}}}{{\rm{E}}} - {{\uppi }}} \right)\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}\left( {{{\upsigma }} - 1} \right) + {{\uppi }}\left( {1 - \frac{{{\hat{\rm X}}}}{{{\hat{\rm E}}}}} \right)} \right\}}} \end{aligned} .$$
(43)

Now,

$$ \begin{aligned} &1 - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}} \hfill \\ & = 1 + \frac{1}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} {\uptheta }_{{\text{L}}} {\upsigma }\frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} \hfill \\& = \frac{{\Delta + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} {\uptheta }_{{\text{L}}} {\upsigma }\frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}}}{\Delta } \hfill \\& = \frac{{ - {\upvarepsilon }_{{\text{u}}} {\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}} + {\upvarepsilon }_{{\text{u}}} {\uptheta }_{{\text{K}}} \left\{ {\left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right) - {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\frac{{\text{u}}}{{{\upvarepsilon }_{{\text{u}}} \left( {1 - {\text{u}}} \right)}}} \right\} + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} {\uptheta }_{{\text{L}}} {\upsigma }\frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}}}{\Delta }~~(from \quad definition \quad of \quad from \quad static \quad model) \hfill \\& = \frac{1}{\Delta }\left[ { - {\upvarepsilon }_{{\text{u}}} {\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{K}}} - {\upvarepsilon }_{{\text{u}}} {\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} + {\upvarepsilon }_{{\text{u}}} {\uptheta }_{{\text{K}}} \left\{ {\left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right) - {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\frac{{\text{u}}}{{{\upvarepsilon }_{{\text{u}}} \left( {1 - {\text{u}}} \right)}}} \right\}} \right. \hfill \\& \quad \left. { + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} {\uptheta }_{{\text{L}}} {\upsigma }\frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}} \right] \hfill \\ &= \frac{1}{\Delta }\left[ { - {\upvarepsilon }_{{\text{u}}} {\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{K}}} - {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{K}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} + {\upvarepsilon }_{{\text{u}}} {\uptheta }_{{\text{K}}} \left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right) - {\upvarepsilon }_{{\text{u}}} {\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} } \right. \hfill \\ & \quad \left. {+ {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} {\uptheta }_{{\text{L}}} {\upsigma }\frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}} \right] \hfill \\ &= \frac{1}{\Delta }\left[ { - {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left( {{\upvarepsilon }_{{\text{u}}} {\uptheta }_{{\text{K}}} {\upsigma } + \frac{{{\uptheta }_{{\text{K}}} {\text{u}}}}{{\left( {1 - {\text{u}}} \right)}}} \right) + {\uptheta }_{{\text{K}}} {\upvarepsilon }_{{\text{u}}} \left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right) + {\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \left( { - {\upvarepsilon }_{{\text{u}}} + {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}} \right)} \right] \hfill \\ &= \frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} + \frac{1}{\Delta }{\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} - {\upvarepsilon }_{{\text{u}}} } \right) \hfill \\ \end{aligned} $$

Now from Eq. (19), we have

\(\left. {\frac{{{\text{dE}}}}{{{\text{dK}}}}} \right|_{{{\dot{\text{E}}} = 0}} = \frac{{\left\{ {\left( {\frac{{{\upalpha \text{X}} - {\uppi \text{E}}}}{{\text{K}}}} \right)\frac{1}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} {\uptheta }_{{\text{L}}} \left( {{\upsigma } - 1} \right) + \frac{{{\uppi \text{E}}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}} \right\}}}{{\left\{ {\left( {\frac{{{\alpha X}}}{{\text{E}}} - {\uppi }} \right)\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}\left( {{\upsigma } - 1} \right) + {\uppi }\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} + \frac{{\uppi }}{\Delta }{\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} - {\upvarepsilon }_{{\text{u}}} } \right)} \right\}}}\).

If \({\upsigma } = 1\), then

\(\left. {\frac{{{\mathbf{dE}}}}{{{\mathbf{dK}}}}} \right|_{{{\dot{\mathbf{E}}} = 0}} = \frac{{\frac{{\mathbf{E}}}{{\mathbf{K}}}\frac{{{\hat{\mathbf{X}}}}}{{{\hat{\mathbf{K}}}}}}}{{\frac{{{\hat{\mathbf{X}}}}}{{{\hat{\mathbf{K}}}}} + \frac{1}{\Delta }{\mathbf{\sigma e}}_{11} \frac{{{\mathbf{w}}^{2} }}{{\mathbf{e}}}{{\varvec{\uptheta}}}_{{\mathbf{L}}} \left( {{{\varvec{\upvarepsilon}}}_{{\mathbf{E}}} \frac{{\mathbf{u}}}{{\left( {1 - {\mathbf{u}}} \right)}} - {{\varvec{\upvarepsilon}}}_{{\mathbf{u}}} } \right)}}\) .

Here the numerator is always positive and the denominator may be negative only if

\({\upvarepsilon }_{{\text{E}}} {\text{u}} > {\upvarepsilon }_{{\text{u}}} \left( {1 - {\text{u}}} \right)\).

Only in this case, second term of the denominator is negative. If \(\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}\) is very low, this denominator may be negative and hence \({\dot{\text{E}}} = 0\) locus may slope negatively.

C.2 Stability analysis of the long-run equilibrium

Jacobian matrix corresponding to the differential Eqs. (14) and (15) is given by.

\({\text{J}} = \left[ {\begin{array}{*{20}c} {\frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}}} & {\frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{E}}}}} \\ {\frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{K}}}}} & {\frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}}} \\ \end{array} } \right]\).

Using Eq. (12), we have

$$ \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}} = {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{r}} + {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{K}}}} - {\text{s}}_{{\text{w}}} {\text{wL}}\frac{{\partial {\text{u}}}}{{\partial {\text{K}}}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{L}}\frac{{\partial {\text{w}}}}{{\partial {\text{K}}}} - {\updelta }{.} $$
(44)

Using Eqs. (14) and (39), we have

$$ \begin{gathered} \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}} = {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{K}}}} - {\text{s}}_{{\text{w}}} \frac{{{\text{wL}}}}{{\text{K}}}\left( {1 - {\text{u}}} \right) - {\text{s}}_{{\text{w}}} {\text{wL}}\frac{{\partial {\text{u}}}}{{\partial {\text{K}}}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{L}}\frac{{\partial {\text{w}}}}{{\partial {\text{K}}}} \hfill \\ \mathop \Rightarrow \limits^{ } \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}} = {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right)\frac{{{\text{rK}}}}{{\text{K}}}\frac{{{\hat{\text{r}}}}}{{{\hat{\text{K}}}}} - {\text{s}}_{{\text{w}}} \left[ {\frac{{{\text{wL}}}}{{\text{K}}}\left( {1 - {\text{u}}} \right) + \frac{{{\text{wL}}}}{{\text{K}}}{\text{u}}\frac{{{\hat{\text{u}}}}}{{{\hat{\text{K}}}}} - \left( {1 - {\text{u}}} \right)\frac{{{\text{wL}}}}{{\text{K}}}\frac{{{\hat{\text{w}}}}}{{{\hat{\text{K}}}}}} \right]. \hfill \\ \end{gathered} $$
(45)

Using Eqs. (6), (8), (9) and (45), we obtain

$$\begin{aligned} &\frac{{\partial {\dot{\rm K}}}}{{\partial {\rm{K}}}} = {{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left[ {\left( {1 - {\rm{u}}} \right) + {\rm{u}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{K}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} - \left( {1 - {\rm{u}}} \right)\frac{{{{{\uptheta }}_{\rm{K}}}{{{\upvarepsilon }}_{\rm{u}}}}}{\Delta }} \right]\\& \Rightarrow \frac{{\partial {\dot{\rm K}}}}{{\partial {\rm{K}}}} = {{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left[ {\left( {1 - {\rm{u}}} \right) + {\rm{u}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{K}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} - \left( {1 - {\rm{u}}} \right)\frac{{{{{\uptheta }}_{\rm{K}}}{{{\upvarepsilon }}_{\rm{u}}}}}{\Delta }} \right]\\& \Rightarrow \frac{{\partial {\dot{\rm K}}}}{{\partial {\rm{K}}}} = {{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\left\{ {1 - \frac{1}{\Delta }\left\{ {{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{K}}}\left( {1 - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\frac{{\rm{u}}}{{{{{\upvarepsilon }}_{\rm{u}}}\left( {1 - {\rm{u}}} \right)}}} \right)} \right.} \right.\\& \left. {\left. { - {{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} + {{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{K}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} + {{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} - {{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{K}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right\}} \right\}\\& \Rightarrow \frac{{\partial {\dot{\rm K}}}}{{\partial {\rm{K}}}} = {{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\left\{ {1 - \frac{1}{\Delta }\left\{ { - {{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} + {{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{K}}}\left\{ {\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right.} \right.} \right.\\& \left. {\left. {\left. { - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\frac{{\rm{u}}}{{{{{\upvarepsilon }}_{\rm{u}}}\left( {1 - {\rm{u}}} \right)}}} \right\} + {{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} - {{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{K}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right\}} \right\}\\& \Rightarrow \frac{{\partial {\dot{\rm K}}}}{{\partial {\rm{K}}}} = {{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\left\{ {1 - \frac{1}{\Delta }\left\{ {\Delta \left. {\left. { - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}} \right\}} \right.} \right.\\ & (from \quad definition \quad of \quad \Delta \quad from \quad static \quad model)\\& \Rightarrow \frac{{\partial {\dot{\rm K}}}}{{\partial {\rm{K}}}} = {{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\left\{ {1 - 1 + \frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}\\& \Rightarrow \frac{{\partial {\dot{\rm K}}}}{{\partial {\rm{K}}}} = {{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right).\end{aligned}$$
(46)

If \({\upsigma } = 1\), then

$$ \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}} = {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right)\frac{{{\text{rK}}}}{{\text{K}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} + {\text{s}}_{{\text{w}}} \frac{{{\text{wL}}}}{{\text{K}}}\left( {1 - {\text{u}}} \right)\frac{1}{\Delta }{\upvarepsilon }_{{\text{u}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} $$
$$ \mathop \Rightarrow \limits^{ } \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}} = \frac{1}{\Delta }{\uptheta }_{{\text{L}}} \frac{1}{{\text{K}}}{\delta e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} \left\{ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{rK}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{wL}}} \right\} $$
$$\Rightarrow \frac{{\partial {\dot{\mathbf{K}}}}}{{\partial {\mathbf{K}}}} = \frac{1}{\Delta }{{\varvec{\uptheta}}}_{{\mathbf{L}}} {\boldsymbol{\delta} \mathbf{e}}_{11} \frac{{{\mathbf{w}}^{2} }}{{\mathbf{e}}}{{\varvec{\upvarepsilon}}}_{{\mathbf{u}}} < 0. ~~(\text{Using} ~~\text{Eq}. ~(14))$$

Using Eq. (12), we have

$$ \begin{gathered} \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{E}}}} = {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{E}}}} - {\text{s}}_{{\text{w}}} {\text{wL}}\frac{{\partial {\text{u}}}}{{\partial {\text{E}}}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{L}}\frac{{\partial {\text{w}}}}{{\partial {\text{E}}}} \hfill \\ \mathop \Rightarrow \limits^{ } \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{E}}}} = {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right)\frac{{{\text{rK}}}}{{\text{E}}}\frac{{{\hat{\text{r}}}}}{{{\hat{\text{E}}}}} + {\text{s}}_{{\text{w}}} \left[ {\frac{{{\text{wL}}}}{{\text{E}}}\left( {1 - {\text{u}}} \right)\frac{{{\hat{\text{w}}}}}{{{\hat{\text{E}}}}} - \frac{{{\text{wL}}}}{{\text{E}}}{\text{u}}\frac{{{\hat{\text{u}}}}}{{{\hat{\text{E}}}}}} \right]. \hfill \\ \end{gathered} $$
(47)

Using Eqs. (6), (8), (9) and (43), we obtain

$$ \begin{aligned} & \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{E}}}} = - {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right)\frac{{{\text{rK}}}}{{\text{E}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} \hfill \\ &\quad+ {\text{s}}_{{\text{w}}} \left[ { - \frac{{{\text{wL}}}}{{\text{E}}}\left( {1 - {\text{u}}} \right)\frac{{{\uptheta }_{{\text{K}}} {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}}}{\Delta }} \right.\left. { + \frac{{{\text{wL}}}}{{\text{E}}}{\text{u}}\frac{1}{\Delta }{\upvarepsilon }_{{\text{E}}} \left\{ { - {\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left. { + {\uptheta }_{{\text{K}}} \left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)} \right\}} \right.} \right] \hfill \\ & \mathop \Rightarrow \limits^{ } \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{E}}}} = - {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right)\frac{{{\text{rK}}}}{{\text{E}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} \hfill \\ & \quad + {\text{s}}_{{\text{w}}} \frac{{{\text{wL}}}}{{\text{E}}}\frac{1}{\Delta }\left[ { - {\uptheta }_{{\text{K}}} {\upvarepsilon }_{{\text{E}}} {\text{u}}} \right.\left. { + {{\text{u}\upvarepsilon }}_{{\text{E}}} \left\{ { - {\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left. { + {\uptheta }_{{\text{K}}} \left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)} \right\}} \right.} \right] \hfill \\ & \mathop \Rightarrow \limits^{ } \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{E}}}} = - {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right)\frac{{{\text{rK}}}}{{\text{E}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} + {\text{s}}_{{\text{w}}} \frac{{{\text{wL}}}}{{\text{E}}}\frac{1}{\Delta }{\upvarepsilon }_{{\text{E}}} {\text{ue}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left( { - {\upsigma } + {\uptheta }_{{\text{K}}} } \right). \hfill \\ \end{aligned} $$
(48)

If \({\upsigma } = 1\), then

$$\begin{aligned} &\frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}} = {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right)\frac{{{\text{rK}}}}{{\text{K}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} + {\text{s}}_{{\text{w}}} \frac{{{\text{wL}}}}{{\text{K}}}\left( {1 - {\text{u}}} \right)\frac{1}{\Delta }{\upvarepsilon }_{{\text{u}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \\ & \Rightarrow \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}} = \frac{1}{\Delta }{\uptheta }_{{\text{L}}} \frac{1}{{\text{K}}}{\delta e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} \left\{ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{rK}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{wL}}} \right\} \\ &\Rightarrow \frac{{\partial {\dot{\mathbf{K}}}}}{{\partial {\mathbf{K}}}} = \frac{1}{\Delta }{{\varvec{\uptheta}}}_{{\mathbf{L}}} {\boldsymbol{\delta} e}_{11} \frac{{{\mathbf{w}}^{2} }}{{\mathbf{e}}}{{\varvec{\upvarepsilon}}}_{{\mathbf{u}}} > 0. \, (\text{Using}~~ \text{Eq}.~~ (14)) \end{aligned}$$

Using Eq. (13), we have

$$ \begin{aligned} &\frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{K}}}} = {\uptau \text{r}} + {\uptau \text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{K}}}} - {\upalpha }\frac{{\partial {\text{X}}}}{{\partial {\text{K}}}} \hfill \\ &\Rightarrow \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{K}}}} = {\uptau \text{r}} + \frac{{{\uptau \text{K}}}}{{\text{r}}}\frac{{\text{r}}}{{\text{K}}}\frac{{{\hat{\text{r}}}}}{{{\hat{\text{K}}}}} - \frac{{{\upalpha \text{X}}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}. \hfill \\ \end{aligned} $$
(49)

From Eq. (15) and (49), we obtain

$$ \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{K}}}} = \left( {\frac{{{\upalpha \text{X}} - {\uppi \text{E}}}}{{\text{K}}}} \right)\left( {1 + \frac{{{\hat{\text{r}}}}}{{{\hat{\text{K}}}}} - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}} \right) - \frac{{{\uppi \text{E}}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}. $$
(50)

From Eq. (8), (10) and (50), we have

$$\begin{aligned}&\frac{{\partial {\dot{\rm E}}}}{{\partial {\rm{K}}}} = \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)\left\{ {1 + \frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{ {\upvarepsilon }}_{\rm{u}}} - \frac{1}{\Delta }\left\{ { - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{k}}}\left( {{{{\varepsilon }}_{\rm{u}}}{{\upsigma }} + \frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right)} \right. + {{{\uptheta }}_{\rm{K}}}\left. {{{{\upvarepsilon }}_{\rm{u}}}\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right\}} \right\}\\& \quad - \frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\\& \Rightarrow \frac{{\partial {\dot{\rm E}}}}{{\partial {\rm{K}}}} = \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)\left[ {1 - \frac{1}{\Delta }\left[ {{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{K}}}\left\{ {\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right.} \right.} \right.\left. { - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\frac{{\rm{u}}}{{{{{\upvarepsilon }}_{\rm{u}}}\left( {1 - {\rm{u}}} \right)}}} \right\}\\&\quad - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{k}}}{{\upsigma }}\left. {\left. { - {{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}} \right]} \right] - \frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\\& \Rightarrow \frac{{\partial {\dot{\rm E}}}}{{\partial {\rm{K}}}} = \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)\left[ {1 - \frac{1}{\Delta }\left[ {{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{K}}}\left\{ {\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right.} \right.} \right.\left. { - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\frac{{\rm{u}}}{{{{{\upvarepsilon }}_{\rm{u}}}\left( {1 - {\rm{u}}} \right)}}} \right\} - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }} + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }}\\& \quad - {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{k}}}{ {\upsigma }}\left. {\left. { - {{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}} \right]} \right] - \frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\\& \Rightarrow \frac{{\partial {\dot{\rm E}}}}{{\partial {\rm{K}}}} = \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)\left[ {1 - \frac{1}{\Delta }\left[ \Delta + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }} {\left( {1 - {{{\uptheta }}_{\rm{K}}}} \right)\left. { - {{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}} \right]} \right]} \right. - \frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\\& \Rightarrow \frac{{\partial {\dot{\rm E}}}}{{\partial {\rm{K}}}} = \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)\left[ {1 - \frac{1}{\Delta }\left[ \Delta + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }} {{{{\uptheta }}_{\rm{L}}}\left. { - {{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}} \right]} \right]} \right. - \frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\\& \Rightarrow \frac{{\partial {\dot{\rm E}}}}{{\partial {\rm{K}}}} = \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)\left[ {1 - \frac{1}{\Delta }\left[ \Delta {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{\upsigma }} {{{{\uptheta }}_{\rm{L}}}\left( {{{\upsigma }} - 1} \right)} \right]} \right] - \frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\\& \Rightarrow \frac{{\partial {\dot{\rm E}}}}{{\partial {\rm{K}}}} = - \left( {\frac{{{{\upalpha \text{X}}} - {{\uppi \text{E}}}}}{{\rm{K}}}} \right)\frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{L}}}\left( {{{\upsigma }} - 1} \right) - \frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}.\end{aligned}$$

If \({\upsigma } = 1,\) then.

$$\frac{{\partial {\dot{\mathbf{E}}}}}{{\partial {\mathbf{K}}}} = - \frac{{{\mathbf{\pi E}}}}{{\mathbf{K}}}\frac{{{\hat{\mathbf{X}}}}}{{{\hat{\mathbf{K}}}}} < 0.$$

Using Eq. (13), we have

$$ \begin{aligned} &\frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}} = {\uptau \text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{E}}}} - {\upalpha }\frac{{\partial {\text{X}}}}{{\partial {\text{E}}}} + {\uppi } \\ & \mathop \Rightarrow \limits^{ } \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}} = \frac{{{\uptau X}}}{{\text{r}}}\frac{{\text{r}}}{{\text{E}}}\frac{{{\hat{\text{r}}}}}{{{\hat{\text{E}}}}} - {\upalpha }\frac{{\text{X}}}{{\text{E}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}} + {\uppi } \\ & \mathop \Rightarrow \limits^{ } \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}} = \left( {\frac{{{\upalpha \text{X}}}}{{\text{E}}} - {\uppi }} \right)\left( {\frac{{{\hat{\text{r}}}}}{{{\hat{\text{E}}}}} - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}}} \right) + {\uppi }\left( {1 - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}}} \right). \end{aligned}$$
(51)

From Eq. (15) and (51), we obtain

$$ \begin{aligned}& \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}} = \left( {\frac{{{\upalpha \text{X}}}}{{\text{E}}} - {\uppi }} \right)\left( {\frac{{{\hat{\text{r}}}}}{{{\hat{\text{E}}}}} - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}}} \right) + {\uppi }\left( {1 - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}}} \right) \hfill \\ & \Rightarrow \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}} = \left( {\frac{{{\upalpha \text{X}}}}{{\text{E}}} - {\uppi }} \right)\left( { - \frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} + \frac{1}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} {\uptheta }_{{\text{L}}} {\upsigma }\frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}} \right) + {\uppi }\left( {1 - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}}} \right) \hfill \\ & \Rightarrow \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}} = \left( {\frac{{{\upalpha \text{X}}}}{{\text{E}}} - {\uppi }} \right)\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}\left( {{\upsigma } - 1} \right) + {\uppi }\left( {1 - \frac{{{\hat{\text{X}}}}}{{{\hat{\text{E}}}}}} \right) \hfill \\ & \Rightarrow \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}} = \left( {\frac{{{\upalpha \text{X}}}}{{\text{E}}} - {\uppi }} \right)\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}\left( {{\upsigma } - 1} \right) + {\uppi }\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} + \frac{{\uppi }}{\Delta }{\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} - {\upvarepsilon }_{{\text{u}}} } \right). \hfill \\ \end{aligned} $$

If \({\upsigma } = 1\), then

\(\frac{{\partial {\dot{\mathbf{E}}}}}{{\partial {\mathbf{E}}}} = {{\varvec{\uppi}}}\frac{{{\hat{\mathbf{X}}}}}{{{\hat{\mathbf{K}}}}} + \frac{{{\varvec{\uppi}}}}{\Delta }{\mathbf{e}}_{11} \frac{{{\mathbf{w}}^{2} }}{{\mathbf{e}}}{{\varvec{\uptheta}}}_{{\mathbf{L}}} \left( {{{\varvec{\upvarepsilon}}}_{{\mathbf{E}}} \frac{{\mathbf{u}}}{{\left( {1 - {\mathbf{u}}} \right)}} - {{\varvec{\upvarepsilon}}}_{{\mathbf{u}}} } \right).\)

Here, \(\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} > 0\). However, if \({\upvarepsilon }_{{\text{E}}} {\text{u}} > {\upvarepsilon }_{{\text{u}}} \left( {1 - {\text{u}}} \right)\) and if \(\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}\) is very low, then \(\frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}}\) may be negative.

Jacobian Determinant, \({\text{J}}\), is given by

$$\begin{aligned}&{\rm{J}} = \left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}\\& \left\{ {\left( {\frac{{{\alpha {\rm X}}}}{{\rm{E}}} - {{\uppi }}} \right)\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}\left( {{{\upsigma }} - 1} \right) + {{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} + \frac{{{\uppi }}}{\Delta }{{\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}} - {{{\upvarepsilon }}_{\rm{u}}}} \right)} \right\} + \\& \left\{ { - {{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}} + {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{E}}}{\rm{u}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}\\& \left\{ {\left( {\frac{{{\alpha{\rm X}} - {{\uppi E}}}}{{\rm{K}}}} \right)\frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{{\uptheta }}_{\rm{L}}}\left( {{{\upsigma }} - 1} \right) + \frac{{{{\uppi E}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}} \right\}\\& = \left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}\\& \left\{ {{{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} + \frac{{{\uppi }}}{\Delta }{{\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}} - {{{\upvarepsilon }}_{\rm{u}}}} \right)} \right\} + \\& \left\{ { - {{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}} + {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{E}}}{\rm{u}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}\frac{{{{\uppi E}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\\& = {{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{\rm{r}}}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right.\\& \left. { - {{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{{\rm{rK}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}} + {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{E}}}\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{E}}}{\rm{u}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\} + \\& \frac{{{\uppi }}}{\Delta }{{\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}} - {{{\upvarepsilon }}_{\rm{u}}}} \right)\\& \left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{\rm{r}}}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}\\& = {{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{\rm{r}}}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( {{{{\upvarepsilon }}_{\rm{u}}} - {{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right) - \left. {{{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)\left( {{{{\upvarepsilon }}_{\rm{u}}} - {{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right)} \right\}} \right.\\& + \frac{{{\uppi }}}{\Delta }{{\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}} - {{{\upvarepsilon }}_{\rm{u}}}} \right)\\& \left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{\rm{r}}}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}\\& = {{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\left( {{{{\upvarepsilon }}_{\rm{u}}} - {{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right)\left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{\rm{r}}}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} - \left. {{{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}} \right.\\& - \frac{{{\uppi }}}{\Delta }{{\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}\left( {{{{\upvarepsilon }}_{\rm{u}}} - {{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right)\\& \left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{\rm{r}}}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}\\& = {{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\left( {{{{\upvarepsilon }}_{\rm{u}}} - {{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right)\left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{\rm{r}}}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} - \left. {{{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}} \right.\\& - \frac{{{\uppi }}}{\Delta }{{\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}{{{\upvarepsilon }}_{\rm{u}}}\left( {{{{\upvarepsilon }}_{\rm{u}}} - {{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right)\\& \left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{\rm{r}}}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} - \left. {{{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}} \right.\\& = {{\uppi }}\left( {{{{\upvarepsilon }}_{\rm{u}}} - {{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right)\left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right)\frac{{\rm{r}}}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} - \left. {{{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}} \right.\\& \left\{ {\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} - \frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}{{{\upvarepsilon }}_{\rm{u}}}} \right\}\\& = {{\uppi }}\left( {{{{\upvarepsilon }}_{\rm{u}}} - {{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right)\frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right){\rm{r}}{{{\uptheta }}_{\rm{L}}} - \left. {{{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}} \right.\\& \left\{ {\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} - \frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}{{{\upvarepsilon }}_{\rm{u}}}} \right\}\end{aligned}$$

If \({\upsigma } = 1\), then

$$ \begin{aligned} &\Rightarrow {\text{J}} = {\uppi }\left( {{\upvarepsilon }_{{\text{u}}} - {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}} \right)\frac{1}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \frac{1}{{\text{K}}}\left\{ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{rk}} + \left. {{\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{wL}}} \right\}} \right. \\ & \left\{ {\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} - \frac{1}{\Delta }{\upvarepsilon }_{{\text{u}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} {\upvarepsilon }_{{\text{u}}} } \right\} \end{aligned} $$

\(\mathop \Rightarrow \limits^{ } {\mathbf{J}} = \left( {{{\varvec{\upvarepsilon}}}_{{\mathbf{u}}} - {{\varvec{\upvarepsilon}}}_{{\mathbf{E}}} \frac{{\mathbf{u}}}{{\left( {1 - {\mathbf{u}}} \right)}}} \right)\frac{{{\varvec{\uppi}}}}{\Delta }{\mathbf{\delta \theta }}_{{\mathbf{L}}} {\mathbf{e}}_{11} \frac{{{\mathbf{w}}^{2} }}{{\mathbf{e}}}\left( {\frac{{{\hat{\mathbf{X}}}}}{{{\hat{\mathbf{K}}}}} - \frac{1}{\Delta }{{\varvec{\upvarepsilon}}}_{{\mathbf{u}}} {\mathbf{e}}_{11} \frac{{{\mathbf{w}}^{2} }}{{\mathbf{e}}}{{\varvec{\uptheta}}}_{{\mathbf{L}}} {{\varvec{\upvarepsilon}}}_{{\mathbf{u}}} } \right) > 0\) (Using Eq. (14))

if \({\upvarepsilon }_{{\text{E}}} {\text{u}} > {\upvarepsilon }_{{\text{u}}} \left( {1 - {\text{u}}} \right)\).

Trace of Jacobian Matrix is \(= \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}} + \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}}\).

Here,

$$ \begin{aligned} &\frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}} + \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}} \hfill \\ & = {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right)\frac{{{\text{rK}}}}{{\text{K}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} - {\text{s}}_{{\text{w}}} \frac{{{\text{wL}}}}{{\text{K}}}\left( {1 - {\text{u}}} \right)\frac{1}{\Delta }{\upvarepsilon }_{{\text{u}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left( { - {\upsigma } + {\uptheta }_{{\text{K}}} } \right) \hfill \\ &\quad + \left( {\frac{{{\upalpha \text{X}}}}{{\text{E}}} - {\uppi }} \right)\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}\left( {{\upsigma } - 1} \right) + {\uppi }\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} + \frac{{\uppi }}{\Delta }{\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} - {\upvarepsilon }_{{\text{u}}} } \right) \hfill \\ \end{aligned} $$

If \({\upsigma } = 1\), then

Trace of Jacobian Matrix

$$= \frac{1}{\Delta }{{\varvec{\uptheta}}}_{{\mathbf{L}}} {\mathbf{\delta e}}_{11} \frac{{{\mathbf{w}}^{2} }}{{\mathbf{e}}}{{\varvec{\upvarepsilon}}}_{{\mathbf{u}}} + {{\varvec{\uppi}}}\frac{{{\hat{\mathbf{X}}}}}{{{\hat{\mathbf{K}}}}} + \frac{{{\varvec{\uppi}}}}{\Delta }{\mathbf{e}}_{11} \frac{{{\mathbf{w}}^{2} }}{{\mathbf{e}}}{{\varvec{\uptheta}}}_{{\mathbf{L}}} \left( {{{\varvec{\upvarepsilon}}}_{{\mathbf{E}}} \frac{{\mathbf{u}}}{{\left( {1 - {\mathbf{u}}} \right)}} - {{\varvec{\upvarepsilon}}}_{{\mathbf{u}}} } \right).$$

Here the first term is always negative and the third term is also negative if

\({\upvarepsilon }_{{\text{E}}} {\text{u}} > {\upvarepsilon }_{{\text{u}}} \left( {1 - {\text{u}}} \right)\).

However, the second term, \({\uppi }\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} > 0\). If \(\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}\) is very low, then trace may be negative and the steady state equilibrium may be stable.

Appendix (D)

From Eq. (14), we have

$$ \begin{aligned} &\left\{ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{r}} + {\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{K}}}} - {\text{s}}_{{\text{w}}} {\text{wL}}\frac{{\partial {\text{u}}}}{{\partial {\text{K}}}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{L}}\frac{{\partial {\text{w}}}}{{\partial {\text{K}}}} - {\updelta }} \right\}\frac{{{\text{dK}}}}{{{\text{d}\uptau}}} \hfill \\&\quad + \left\{ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){\text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{E}}}} - {\text{s}}_{{\text{w}}} {\text{wL}}\frac{{\partial {\text{u}}}}{{\partial {\text{E}}}} + {\text{s}}_{{\text{w}}} \left( {1 - {\text{u}}} \right){\text{L}}\frac{{\partial {\text{w}}}}{{\partial {\text{E}}}}} \right\}\frac{{{\text{dE}}}}{{{\text{d}\uptau}}} = {\text{rK}} \hfill \\ \end{aligned} $$
(52)

Using Eqs. (6), (8), (9) and (40), we obtain

$$ \begin{aligned}& \left[ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right)\frac{{{\text{rK}}}}{{\text{K}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} } - {\text{s}}_{{\text{w}}} \frac{{{\text{wL}}}}{{\text{K}}}\left( {1 - {\text{u}}} \right)\frac{1}{\Delta }{\upvarepsilon }_{{\text{u}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}} {\left( { - {\upsigma } + {\uptheta }_{{\text{K}}} } \right)} \right]\frac{{{\text{dK}}}}{{{\text{d}\uptau}}} \hfill \\ & - \left[ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right)\frac{{{\text{rK}}}}{{\text{E}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}} \right.\left. { - {\text{s}}_{{\text{w}}} \frac{{{\text{wL}}}}{{\text{E}}}\frac{1}{\Delta }{\upvarepsilon }_{{\text{E}}} {\text{ue}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left( { - {\upsigma } + {\uptheta }_{{\text{K}}} } \right)} \right]\frac{{{\text{dE}}}}{{{\text{d}\uptau}}} = {\text{rK}} \hfill \\ &\mathop \Rightarrow \limits^{ } \left[ {\frac{1}{\Delta }{{\updelta \uptheta }}_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} } + {\text{s}}_{{\text{w}}} \frac{{{\text{wL}}}}{{\text{K}}}\left( {1 - {\text{u}}} \right)\frac{1}{\Delta }{\upvarepsilon }_{{\text{u}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}} {\left( {{\upsigma } - 1} \right)} \right]\frac{{{\text{dK}}}}{{{\text{d}\uptau}}} \hfill \\ &- \left[ {\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}} \right.\left. {\frac{{{\delta K}}}{{\text{E}}} + {\text{s}}_{{\text{w}}} \frac{{{\text{wL}}}}{{\text{E}}}\frac{1}{\Delta }{\upvarepsilon }_{{\text{E}}} {\text{ue}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left( {{\upsigma } - 1} \right)} \right]\frac{{{\text{dE}}}}{{{\text{d}\uptau}}} = {\text{rK}}. \hfill \\ \end{aligned} $$
(53)

From Eq. (15), we have

$$ \left( {{\tau \text{r}} + {\tau \text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{K}}}} - {\upalpha }\frac{{\partial {\text{X}}}}{{\partial {\text{K}}}}} \right)\frac{{{\text{dK}}}}{{{\text{d}\uptau}}} + \left( {{\tau \text{K}}\frac{{\partial {\text{r}}}}{{\partial {\text{E}}}} - {\upalpha }\frac{{\partial {\text{X}}}}{{\partial {\text{E}}}} + {\uppi }} \right)\frac{{{\text{dE}}}}{{{\text{d}\uptau}}} = - {\text{rK}}{.} $$
(54)

Using Eqs. (8), (10) and (41), we obtain

$$ \begin{aligned} &- \left\{ {\left( {\frac{{{\alpha X} - {\uppi \text{E}}}}{{\text{K}}}} \right)\frac{1}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} {\uptheta }_{{\text{L}}} \left( {{\upsigma } - 1} \right) + \frac{{{\uppi \text{E}}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}} \right\}\frac{{{\text{dK}}}}{{{\text{d}\uptau}}} \hfill \\ &+ \left\{ {\left( {\frac{{{\alpha X}}}{{\text{E}}} - {\uppi }} \right)\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}\left( {{\upsigma } - 1} \right) + {\uppi }\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} + \frac{{\uppi }}{\Delta }{\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} - {\upvarepsilon }_{{\text{u}}} } \right)} \right\}\frac{{{\text{dE}}}}{{{\text{d}\uptau}}} = - {\text{rK}}{.} \hfill \\ \end{aligned} $$
(55)

Using Eqs. (53) and (56), we have

$$\frac{{{\rm{dK}}}}{{{\rm{d}\uptau }}} = {\rm{rK}}\frac{{\frac{{{{{\uptheta }}_{\rm{L}}}}}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left\{ {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}{\rm{E}}\left( {{{\uppi \text{E}}} - {{\updelta \text{K}}}} \right) - {{\uppi }}{{{\upvarepsilon }}_{\rm{u}}}} \right\} + {{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} + \frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}\frac{1}{{\rm{E}}}\left( {{{\upsigma }} - 1} \right)\left\{ { - {{\rm{s}}_{\rm{w}}}{\rm{wL}}\left( {1 - {\rm{u}}} \right) + \left( {{{\upalpha \text{X}}} - {{\uppi \text{E}}}} \right){{{\uptheta }}_{\rm{L}}}} \right\}}}{{{{\uppi }}\left( {{{{\upvarepsilon }}_{\rm{u}}} - {{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right)\frac{1}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left\{ {{{\rm{s}}_{\rm{p}}}\left( {1 - {{\uptau }}} \right){\rm{r}}{{{\uptheta }}_{\rm{L}}} - {{\rm{s}}_{\rm{w}}}\frac{{{\rm{wL}}}}{{\rm{K}}}\left( {1 - {\rm{u}}} \right)\left( { - {{\upsigma }} + {{{\uptheta }}_{\rm{K}}}} \right)} \right\}\left\{ {\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} - \frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}{{{\upvarepsilon }}_{\rm{u}}}} \right\}}};$$
(56)

and

$$ \frac{{{\text{dE}}}}{{{\text{d}\uptau }}} = - {\text{rK}}\frac{{\frac{1}{\Delta }{{\updelta \uptheta }}_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} - \frac{{{\uppi \text{E}}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} + \frac{1}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} \frac{1}{{\text{K}}}\left( {{\upsigma } - 1} \right)\left\{ {{\text{s}}_{{\text{w}}} {\text{wL}}\left( {1 - {\text{u}}} \right) - \left( {{\upalpha \text{X}} - {\uppi \text{E}}} \right){\uptheta }_{{\text{L}}} } \right\}}}{{{\uppi }\left( {{\upvarepsilon }_{{\text{u}}} - {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}} \right)\frac{1}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left\{ {{\text{s}}_{{\text{p}}} \left( {1 - {\uptau }} \right){{\text{r} \uptheta }}_{{\text{L}}} - \left. {{\text{s}}_{{\text{w}}} \frac{{{\text{wL}}}}{{\text{K}}}\left( {1 - {\text{u}}} \right)\left( { - {\upsigma } + {\uptheta }_{{\text{K}}} } \right)} \right\}\left\{ {\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} - \frac{1}{\Delta }{\upvarepsilon }_{{\text{u}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} {\upvarepsilon }_{{\text{u}}} } \right\}} \right.}}. $$
(57)

Equations (56) and (57) are same as Eqs. (18) and (19) in the body of the paper.

If \({\upsigma } = 1\).

then from equations (56) and (57), we obtain

$$\frac{{{\rm{dK}}}}{{{\rm{d}\uptau }}} = {\rm{rK}}\frac{{\frac{{{{{\uptheta }}_{\rm{L}}}}}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left\{ {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}{\rm{E}}\left( {{{\uppi E}} - {{\updelta K}}} \right) - {{\uppi }}{{{\upvarepsilon }}_{\rm{u}}}} \right\} + {{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}}}{{\left( {{{{\upvarepsilon }}_{\rm{u}}} - {{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right)\frac{{{\uppi }}}{\Delta }{{\updelta }}{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( {\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} - \frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}{{{\upvarepsilon }}_{\rm{u}}}} \right)}};$$
(58)

and

$$ \frac{{{\text{dE}}}}{{{\text{d}\uptau}}} = - {\text{rK}}\frac{{\frac{1}{\Delta }{{\updelta \theta }}_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} - \frac{{{\uppi E}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}}}{{\left( {{\upvarepsilon }_{{\text{u}}} - {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}} \right)\frac{{\uppi }}{\Delta }{{\updelta \uptheta }}_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left( {\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} - \frac{1}{\Delta }{\upvarepsilon }_{{\text{u}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} {\upvarepsilon }_{{\text{u}}} } \right)}}. $$
(59)

Equations (58) and (59) are same as Eqs. (20) and (21) in the body of the paper.

From Eq. (9), we have

$$ \begin{aligned} & {\hat{\text{u}}} = \frac{1}{\Delta }\left[ { - {\upvarepsilon }_{{\text{E}}} \left\{ { - {\upsigma \text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right.} \right.\left. { + {\uptheta }_{{\text{K}}} \left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)} \right\}{\hat{\text{E}}} + {\uptheta }_{{\text{K}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left. {{\hat{\text{K}}}} \right] \hfill \\ & \Rightarrow \frac{{{\text{du}}}}{{{\text{d}\uptau}}} = \frac{{\text{u}}}{\Delta }\left[ { - {\upvarepsilon }_{{\text{E}}} \left\{ { - {\upsigma \text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right.} \right.\left. { + {\uptheta }_{{\text{K}}} \left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)} \right\}\frac{1}{{\text{E}}}\frac{{{\text{dE}}}}{{{\text{d}\uptau}}} + {\uptheta }_{{\text{K}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left. {\frac{1}{{\text{K}}}\frac{{{\text{dK}}}}{{{\text{d}\uptau}}}} \right]. \hfill \\ \end{aligned} $$
(60)

Using equations (58)–(60), we obtain

$$\frac{{{\rm{du}}}}{{{\rm{d}\uptau }}} = \frac{{\rm{u}}}{\Delta }\left[ {{{{\uptheta }}_{\rm{K}}}{{\rm{e}}_{11}}} {\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{\rm{r}}\frac{{\frac{{{{{\uptheta }}_{\rm{L}}}}}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left\{ {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}{\rm{E}}\left( {{{\uppi \text{E}}} - {{\updelta \text{K}}}} \right) - {{\uppi }}{{{\upvarepsilon }}_{\rm{u}}}} \right\} + {{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}}}{{\left( {{{{\upvarepsilon }}_{\rm{u}}} - {{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1 - {\rm{u}}} \right)}}} \right)\frac{{{\uppi }}}{\Delta }{{\updelta }}{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( {\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} - \frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}{{{\upvarepsilon }}_{\rm{u}}}} \right)}}} \right] $$

Equation (60) is same as Eq. (23) in the body of the paper.

Appendix (E)

6.1 E.1 Ramsey Problem

6.1.1 Rate of Growth of Consumption

The representative consumer maximizes \(\mathop \int \limits_{0}^{ \propto } \left[ {\frac{{\left( {{\text{C}}^{{\upmu }} {\text{E}}^{{1 - {\upmu }}} } \right)^{1 - \vartheta } - 1}}{1 - \vartheta } - {\text{V}}\left( {\text{e}} \right)} \right]{\text{e}}^{{ - {\rho t}}} {\text{dt}}\) subject to the equation of motion given by

$$ {\dot{\text{K}}} = {\text{sY}} - {\delta K}{.} $$
(61)

\({\text{K}}\left( 0 \right)\) is given. \({\text{K}}\) is the state variable; and \({\text{s}}\) and \({\text{e}}\) are two control variables.

The Current value Hamiltonian to be maximized at each point of time is given by

$${\rm{H}} = \left[ {\frac{{{{\left( {{{{\bar{\rm C}}}^{{\upmu }}}{{\rm{E}}^{1-{{\upmu }}}}} \right)}^{1-\vartheta }}-1}}{{1-\vartheta }}-{\rm{V}}\left( {\rm{e}} \right)} \right]{{\rm{e}}^{-{{\uprho \text{t}}}}} + {\rm{q}}{{\rm{e}}^{-{{\uprho \text{t}}}}}{\dot{\rm K}};$$
(62)

where, \({\text{q}}\) is the co-state variable.

Using equations (61) and (62) and the expression of \({\overline{\text{Y}}}\), we have

$$ \begin{aligned} &{\text{H}} = \frac{{\left( {{\overline{\text{C}}}^{{\upmu }} {\text{E}}^{{1 - {\upmu }}} } \right)^{1 - \vartheta } - 1}}{1 - \vartheta }{\text{e}}^{{ - {\rho t}}} + {\text{qe}}^{{ - {\rho t}}} \left\{ {\left( {{\overline{\text{Y}}} - {\overline{\text{C}}}} \right) - {{\updelta K }}} \right\} - {\text{V}}\left( {\text{e}} \right){\text{e}}^{{ - {\rho t}}} , \hfill \\ & \Rightarrow {\text{H}} = \frac{{\left( {{\overline{\text{C}}}^{{\upmu }} {\text{E}}^{{1 - {\upmu }}} } \right)^{1 - \vartheta } - 1}}{1 - \vartheta }{\text{e}}^{{ - {\rho t}}} + {\text{qe}}^{{ - {\rho t}}} \left[ {{\text{p}}\left( {\text{e}} \right){\text{w}} + \left( {1 - {\text{p}}\left( {\text{e}} \right)} \right)\left( {1 - {\text{u}}} \right){\text{w}}^{*} + \left( {1 - {\uptau }} \right){\text{rK}}} \right] \hfill \\ & - {\text{qe}}^{{ - {\rho t}}} {{\uptau rK}} - {\text{qe}}^{{ - {\rho t}}} {\overline{\text{C}}} - {{\updelta Kqe}}^{{ - {\rho t}}} . \hfill \\ \end{aligned} $$
(63)

The representative consumer is a taker of, \({\text{r}}\) and \({\text{w}}\) and \({\text{w}}^{*}\). \({\text{H}}\) is to be maximized with respect to \({\text{s}}\) and \({\text{e}}\). Since \({\overline{\text{C}}}\) is a function of \({\text{s}}\) and \({\text{e}}\), we obtain the same solution maximizing \({\text{H}}\) with respect to \({\overline{\text{C}}}\) and \({\text{e}}\). The first order interior optimality condition with respect to \({\overline{\text{C}}}\) is given by

$$ \begin{gathered} \left[ {{{\upmu \overline{\text{C}}}}^{{{\upmu }\left( {1 - \vartheta } \right) - 1}} {\text{E}}^{{\left( {1 - {\upmu }} \right)\left( {1 - \vartheta } \right)}} - {\text{q}}} \right]{\text{e}}^{{ - {\rho t}}} = 0, \hfill \\ \Rightarrow {{\upmu \overline{\text{C}}}}^{{{\upmu }\left( {1 - \vartheta } \right) - 1}} {\text{E}}^{{\left( {1 - {\upmu }} \right)\left( {1 - \vartheta } \right)}} = {\text{q}}. \hfill \\ \end{gathered} $$
(64)

Similarly the first order interior optimality condition with respect to \({\text{e}}\) is given by

$$ \left[ {\left( {1 - {\text{s}}} \right){{\upmu \overline{\text{C}}}}^{{{\upmu }\left( {1 - \vartheta } \right) - 1}} {\text{E}}^{{\left( {1 - {\upmu }} \right)\left( {1 - \vartheta } \right)}} + {\text{qs}}} \right]\frac{{\partial {\overline{\text{Y}}}}}{{\partial {\text{e}}}} = {\text{V}^{\prime}}\left( {\text{e}} \right), $$
(65)

where

$$ \frac{{\partial {\overline{\text{Y}}}}}{{\partial {\text{e}}}} = {\text{p}^{\prime}}\left( {\text{e}} \right)\left[ {{\text{w}} - {\text{w}}^{*} + {\text{w}}^{*} {\text{u}}} \right]. $$

From equation (65) and using \({\text{C}} = {\overline{\text{C}}}\) in the general equilibrium, we have

$$ \frac{{{\dot{\text{C}}}}}{{\text{C}}} = \frac{1}{{\left( {{\upmu }\left( {1 - \vartheta } \right) - 1} \right)}}\frac{{{\dot{\text{q}}}}}{{\text{q}}} - \frac{{\left( {1 - {\upmu }} \right)\left( {1 - \vartheta } \right)}}{{\left( {{\upmu }\left( {1 - \vartheta } \right) - 1} \right)}}\frac{{{\dot{\text{E}}}}}{{\text{E}}}. $$
(66)

Optimum time path of the co-state variable satisfies the following differential equation.

$$ \begin{aligned} & {\dot{\text{q}}} = {\rho q} - \frac{{\partial {\text{He}}^{{{\rho t}}} }}{{\partial {\text{K}}}}, \hfill \\ & \mathop \Rightarrow \limits_{ } \frac{{{\dot{\text{q}}}}}{{\text{q}}} = {\uprho } + {\updelta } - {\text{r}}\left( {1 - {\uptau }} \right) \hfill \\ \end{aligned} $$
(67)

Using equations (66) and (67), we obtain

$$ \frac{{{\dot{\text{C}}}}}{{\text{C}}} = \frac{{{\text{r}}\left( {1 - {\uptau }} \right) - {\updelta } - {\uprho }}}{{1 - {\upmu }\left( {1 - \vartheta } \right)}} - \frac{{\left( {1 - {\upmu }} \right)\left( {1 - \vartheta } \right)}}{{\left( {{\upmu }\left( {1 - \vartheta } \right) - 1} \right)}}\frac{{{\dot{\text{E}}}}}{{\text{E}}}. $$
(68)

Equation (68) is same as Eq. (24) in the body of the paper.

Using equations (64) and (65) and the expression of \(\frac{{\partial {\overline{\text{Y}}}}}{{\partial {\text{c}}}}\) and \({\text{C}} = {\overline{\text{C}}}\), we have

$$ {\upmu \text{C}}^{{{\upmu }\left( {1 - \vartheta } \right) - 1}} {\text{E}}^{{\left( {1 - {\upmu }} \right)\left( {1 - \vartheta } \right)}} {\text{p}^{\prime}}\left( {\text{e}} \right)\left[ {{\text{w}} - {\text{w}}^{*} + {\text{uw}}^{*} } \right] = {\text{V}^{\prime}}\left( {\text{e}} \right). $$
(69)

In the general equilibrium

$$ {\text{w}}^{*} \left( {1 - {\text{u}}} \right) = \frac{{{\text{w}}\left[ {1 - {\text{u}} - {\text{p}}\left( {\text{e}} \right)} \right]}}{{1 - {\text{p}}\left( {\text{e}} \right)}}. $$

So from equation (69), we have

$$ {\mu C}^{{{\upmu }\left( {1 - \vartheta } \right) - 1}} {\text{E}}^{{\left( {1 - {\upmu }} \right)\left( {1 - \vartheta } \right)}} {\text{p}^{\prime}}\left( {\text{e}} \right)\left[ {\frac{{{\text{wu}}}}{{1 - {\text{p}}\left( {\text{e}} \right)}}} \right] = {\text{V}^{\prime}}\left( {\text{e}} \right). $$
(70)

Equation (70) is same as Eq. (26) in the body of the paper.

From equation (70), we have

$$ \left[ {\left( {{\upmu }\left( {1 - \vartheta } \right) - 1} \right)} \right]\frac{{{\dot{\text{c}}}}}{{\text{c}}} + \left( {1 - {\upmu }} \right)\left( {1 - \vartheta } \right)\frac{{{\dot{\text{E}}}}}{{\text{E}}} + \frac{{{\dot{\text{u}}}}}{{\text{u}}} + \frac{{{\dot{\text{w}}}}}{{\text{w}}} = \frac{{\text{e}}}{{{\text{V}^{\prime}}\left( {\text{e}} \right)}}{\text{V}^{\prime\prime}}\left( {\text{e}} \right)\frac{{{\dot{\text{e}}}}}{{\text{e}}} - \frac{{{\text{p}^{\prime}}\left( {\text{e}} \right){\text{e}}}}{{\left( {1 - {\text{p}}\left( {\text{e}} \right)} \right)}}\frac{{{\dot{\text{e}}}}}{{\text{e}}} - \frac{{{\text{p}^{\prime\prime}}\left( {\text{e}} \right){\text{e}}}}{{{\text{p}^{\prime}}\left( {\text{e}} \right)}}\frac{{{\dot{\text{e}}}}}{{\text{e}}}. $$
(71)

Using equations (68) and (71), we have,

$$ \begin{aligned} & {\updelta } + {\uprho } - {\text{r}}\left( {1 - {\uptau }} \right) + \frac{{{\dot{\text{u}}}}}{{\text{u}}} + \frac{{{\dot{\text{w}}}}}{{\text{w}}} = \frac{{\text{e}}}{{{\text{V}^{\prime}}\left( {\text{e}} \right)}}{\text{V}^{\prime\prime}}\left( {\text{e}} \right)\frac{{{\dot{\text{e}}}}}{{\text{e}}} - \frac{{{\text{p}^{\prime}}\left( {\text{e}} \right){\text{e}}}}{{\left( {1 - {\text{p}}\left( {\text{e}} \right)} \right)}}\frac{{{\dot{\text{e}}}}}{{\text{e}}} - \frac{{{\text{p}^{\prime\prime}}\left( {\text{e}} \right){\text{e}}}}{{{\text{p}^{\prime}}\left( {\text{e}} \right)}}\frac{{{\dot{\text{e}}}}}{{\text{e}}}, \hfill \\ &\Rightarrow \frac{{{\dot{\text{e}}}}}{{\text{e}}} = \frac{{{\updelta } + {\uprho } - {\text{r}}\left( {1 - {\uptau }} \right) + \frac{{{\dot{\text{u}}}}}{{\text{u}}} + \frac{{{\dot{\text{w}}}}}{{\text{w}}}}}{{\frac{{\text{e}}}{{{\text{V}^{\prime}}\left( {\text{e}} \right)}}{\text{V}^{\prime\prime}}\left( {\text{e}} \right) - \left( {\frac{{{\text{p}^{\prime}}\left( {\text{e}} \right){\text{e}}}}{{\left( {1 - {\text{p}}\left( {\text{e}} \right)} \right)}} + \frac{{{\text{p}^{\prime\prime}}\left( {\text{e}} \right){\text{e}}}}{{{\text{p}^{\prime}}\left( {\text{e}} \right)}}} \right)}} \hfill \\ \end{aligned} $$
(72)

Using Eqs. (6) and (72), we have

$$ \frac{{{\dot{\text{e}}}}}{{\text{e}}} = \frac{{{\updelta } + {\uprho }-{\text{r}}\left( {1-{\uptau }} \right) + \frac{{{\dot{\text{u}}}}}{{\text{u}}} + \frac{1}{\Delta }\left\{ {-{\uptheta }_{{\text{K}}} {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}\frac{{{\dot{\text{E}}}}}{{\text{E}}} + \left. {{\uptheta }_{{\text{K}}} {\upvarepsilon }_{{\text{u}}} \frac{{{\dot{\text{K}}}}}{{\text{K}}}} \right\}} \right.}}{{\frac{{\text{e}}}{{{\text{V}^{\prime}}\left( {\text{e}} \right)}}{\text{V}^{\prime\prime}}\left( {\text{e}} \right)-\left( {\frac{{{\text{p}^{\prime}}\left( {\text{e}} \right){\text{e}}}}{{\left( {1-{\text{p}}\left( {\text{e}} \right)} \right)}} + \frac{{{\text{p}^{\prime\prime}}\left( {\text{e}} \right){\text{e}}}}{{{\text{p}^{\prime}}\left( {\text{e}} \right)}}} \right)}}. $$
(73)

Using Eq. (9), we get

$$ \frac{{{\dot{\text{u}}}}}{{\text{u}}} = \frac{1}{\Delta }\left[ {-{\upvarepsilon }_{{\text{E}}} \left\{ {-{\sigma e}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right.} \right.\left. { + {\uptheta }_{{\text{K}}} \left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)} \right\}\frac{{{\dot{\text{E}}}}}{{\text{E}}} + {\uptheta }_{{\text{K}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left. {\frac{{{\dot{\text{K}}}}}{{\text{K}}}} \right]. $$
(74)

Using equations (68), (73) and (74), we have

$$\begin{aligned} & \frac{{{\dot{\rm e}}}}{{\rm{e}}} = \frac{{\left\{ {{{\upmu }}\left( {1-\vartheta } \right)-1} \right\}\left( {\frac{{\left( {1-{{\upmu }}} \right)\left( {1-\vartheta } \right)}}{{\left( {{{\upmu }}\left( {1-\vartheta } \right)-1} \right)}}\frac{{{\dot{\rm E}}}}{{\rm{E}}} + \frac{{{\dot{\rm C}}}}{{\rm{C}}}} \right) + \frac{1}{\Delta }\left[ {-{{{\upvarepsilon }}_{\rm{E}}}\left\{ {-{{\upsigma }}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right.} \right.\left. { + {{{\uptheta }}_{\rm{K}}}\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right\}\frac{{{\dot{\rm E}}}}{{\rm{E}}} + {{{\uptheta }}_{\rm{K}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left. {\frac{{{\dot{\rm K}}}}{{\rm{K}}}} \right] + \frac{1}{\Delta }\left\{ {-{{{\uptheta }}_{\rm{K}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}\frac{{{\dot{\rm E}}}}{{\rm{E}}} + \left. {{{{\uptheta }}_{\rm{K}}}{{{\upvarepsilon }}_{\rm{u}}}\frac{{{\dot{\rm K}}}}{{\rm{K}}}} \right\}} \right.}}{{\frac{{\rm{e}}}{{{\rm{V'}}\left( {\rm{e}} \right)}}{\rm{V}^{\prime\prime}}\left( {\rm{e}} \right)-\left( {\frac{{{\rm{p}^{\prime}}\left( {\rm{e}} \right){\rm{e}}}}{{\left( {1-{\rm{p}}\left( {\rm{e}} \right)} \right)}} + \frac{{{\rm{p}^{\prime\prime}}\left( {\rm{e}} \right){\rm{e}}}}{{{\rm{p}{\prime}}\left( {\rm{e}} \right)}}} \right)}},\\& \mathop \Rightarrow \limits_{\rm{~}} \frac{{{\dot{\rm e}}}}{{\rm{e}}} = \frac{{\left\{ {{{\upmu }}\left( {1-\vartheta } \right)-1} \right\}\left( {\frac{{\left( {1-{{\upmu }}} \right)\left( {1-\vartheta } \right)}}{{\left( {{{\upmu }}\left( {1-\vartheta } \right)-1} \right)}}\frac{{{\dot{\rm E}}}}{{\rm{E}}} + \frac{{{\dot{\rm C}}}}{{\rm{C}}}} \right) + \frac{{{{{\upvarepsilon }}_{\rm{E}}}}}{\Delta }\left[ {\left\{ {-{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right.\left. { + {{{\uptheta }}_{\rm{K}}}\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right\} + {{{\uptheta }}_{\rm{K}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}} \right]\frac{{{\dot{\rm E}}}}{{\rm{E}}} + \frac{1}{\Delta }{{{\uptheta }}_{\rm{K}}}\left( {{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} + {{{\upvarepsilon }}_{\rm{u}}}} \right)\frac{{{\dot{\rm K}}}}{{\rm{K}}}}}{{\frac{{\rm{e}}}{{{\rm{V}^{\prime}}\left( {\rm{e}} \right)}}{\rm{V}^{\prime\prime}}\left( {\rm{e}} \right)-\left( {\frac{{{\rm{p}^{\prime}}\left( {\rm{e}} \right){\rm{e}}}}{{\left( {1-{\rm{p}}\left( {\rm{e}} \right)} \right)}} + \frac{{{\rm{p}^{\prime\prime}}\left( {\rm{e}} \right){\rm{e}}}}{{{\rm{p}^{\prime}}\left( {\rm{e}} \right)}}} \right)}}\;\quad \left[ {{\rm{with}~~\upsigma } = 1} \right],\\& \mathop \Rightarrow \limits_{\rm{~}} \frac{{{\dot{\rm e}}}}{{\rm{e}}} = \frac{{\left\{ {{{\upmu }}\left( {1-\vartheta } \right)-1} \right\}\frac{{{\dot{\rm C}}}}{{\rm{C}}} + \frac{{{{{\upvarepsilon }}_{\rm{E}}}}}{\Delta }\left[ {\left\{ {-{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right.\left. { + {{{\uptheta }}_{\rm{K}}}\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right\} + {{{\uptheta }}_{\rm{K}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}} + \left( {1-{{\upmu }}} \right)\left( {1-\vartheta } \right)} \right]\frac{{{\dot{\rm E}}}}{{\rm{E}}} + \frac{1}{\Delta }{{{\uptheta }}_{\rm{K}}}\left( {{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}} + {{{\upvarepsilon }}_{\rm{u}}}} \right)\frac{{{\dot{\rm K}}}}{{\rm{K}}}}}{{\frac{{\rm{e}}}{{{\rm{V'}}\left( {\rm{e}} \right)}}{\rm{V}^{\prime\prime}}\left( {\rm{e}} \right)-\left( {\frac{{{\rm{p}^{\prime}}\left( {\rm{e}} \right){\rm{e}}}}{{\left( {1-{\rm{p}}\left( {\rm{e}} \right)} \right)}} + \frac{{{\rm{p}^{\prime\prime}}\left( {\rm{e}} \right){\rm{e}}}}{{{\rm{p}^\prime}\left( {\rm{e}} \right)}}} \right)}}.\end{aligned}$$
(75)

Equation (76) is same as Eq. (27) in the body of the paper.

6.2 E.2 Stability of long-run equilibrium

While analysing stability of long run equilibrium, we use three independent equations of motion given by (24), (25) and (13). These equations of motion are given by

$$ \begin{aligned} & {\dot{\text{C}}} = \frac{{{\text{r}}\left( {1-{\uptau }} \right)-{\updelta }-{\uprho }}}{{1-{\upmu }\left( {1-\vartheta } \right)}}{\text{C}}-\frac{{\left( {1-{\upmu }} \right)\left( {1-\vartheta } \right)}}{{{\upmu }\left( {1-\vartheta } \right)-1}}{\text{C}}\frac{{{\dot{\text{E}}}}}{{\text{E}}}, \hfill \\ & \Rightarrow {\dot{\text{C}}} = \frac{{{\text{r}}\left( {1-{\uptau }} \right)-{\updelta }-{\uprho }}}{{1-{\upmu }\left( {1-\vartheta } \right)}}{\text{C}}-\frac{{\left( {1-{\upmu }} \right)\left( {1-\vartheta } \right)}}{{{\upmu }\left( {1-\vartheta } \right)-1}}\frac{{\text{C}}}{{\text{E}}}\left( {{{\uptau \text{rK}}}-{\upalpha \text{X}} + {\uppi \text{E}}} \right) \hfill \\ \end{aligned} $$

and

\(\begin{aligned}&{\dot{\text{K}}} = {\text{s}}\left( {{\text{X}}-{{\uptau \text{rK}}}} \right)-{{\updelta \text{K},}} \hfill \\ & \Rightarrow {\dot{\text{K}}} = \left( {1-\frac{{\text{C}}}{{{\text{X}}-{{\uptau \text{rK}}}}}} \right)\left( {{\text{X}}-{{\uptau \text{rK}}}} \right)-{\updelta \text{K}}. \hfill \\ & \mathop \Rightarrow \limits_{ } {\dot{\text{K}}} = {\text{X}}-{{\uptau \text{rK}}}-{\text{C}}-{{\updelta \text{K};}} \hfill \\ \end{aligned}\)

and

\({\dot{\text{E}}} = {{\uptau \text{rK}}}-{\upalpha \text{X}} + {\uppi \text{E}}\).

The stability properties of the long-run equilibrium depends on the sign of latent roots of the Jacobian matrix corresponding to those three equations of motion. The Jacobian matrix is given by.

\({\text{J}} = \left[ {\begin{array}{*{20}c} {\frac{{\partial {\dot{\text{C}}}}}{{\partial {\text{C}}}}} & {\frac{{\partial {\dot{\text{C}}}}}{{\partial {\text{K}}}}} & {\frac{{\partial {\dot{\text{C}}}}}{{\partial {\text{E}}}}} \\ {\frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{C}}}}} & {\frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}}} & {\frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{E}}}}} \\ {\frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{C}}}}} & {\frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{K}}}}} & {\frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}}} \\ \end{array} } \right]\).

We assume \({\upsigma } = 1\), i.e., the production function is Cobb–Douglas. Using Eqs. (7A), (10A), (16)–(18) and long-run equilibrium conditions, we have

\( \begin{aligned} & \frac{{\partial {\dot{\text{C}}}}}{{\partial {\text{c}}}} = 0; \\ & \frac{{\partial {\dot{\text{C}}}}}{{\partial {\text{K}}}} = {\text{C}}\frac{{\left( {1-{\uptau }} \right)}}{{1-{\upmu }\left( {1-\vartheta } \right)}}\frac{{\text{r}}}{{\text{K}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} + \frac{{\left( {1-{\upmu }} \right)\left( {1-\vartheta } \right)}}{{{\upmu }\left( {1-\vartheta } \right)-1}}\frac{{\text{C}}}{{\text{E}}}\frac{{{\uppi \text{E}}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}; \\ & \frac{{\partial {\dot{\text{C}}}}}{{\partial {\text{E}}}} =-{\text{C}}\frac{{\left( {1-{\uptau }} \right)}}{{1-{\upmu }\left( {1-\vartheta } \right)}}\frac{{\text{r}}}{{\text{E}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}-\frac{{\left( {1-{\upmu }} \right)\left( {1-\vartheta } \right)}}{{{\upmu }\left( {1-\vartheta } \right)-1}}\frac{{\text{C}}}{{\text{E}}}\left\{ {{\uppi }\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} + \frac{{\uppi }}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}-{\upvarepsilon }_{{\text{u}}} } \right)} \right\}; \\ & \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{C}}}} =-1 < 0; \\ & \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}} = \frac{{\text{X}}}{{\text{K}}}\frac{1}{\Delta }\left\{ {-{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{k}}} \left( {{\upvarepsilon }_{{\text{u}}} + \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}} \right)} \right. + {\uptheta }_{{\text{K}}} \left. {{\upvarepsilon }_{{\text{u}}} \left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)} \right\}-{\uptau \text{r}}\left( {1 + \frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} } \right)-{\updelta }; \\ & \frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{E}}}} =-\frac{{{\text{rK}}}}{{\text{E}}}\left( {1-{\uptau }} \right)\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}} > 0; \\ & \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{C}}}} = 0; \\ & \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{K}}}} =-\frac{{{\uppi \text{E}}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} < 0 \\ & \text{and} \\ & \frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}} = {\uppi }\frac{{\widehat{{{\text{pX}}}}}}{{{\hat{\text{K}}}}} + \frac{{\uppi }}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}-{\upvarepsilon }_{{\text{u}}} } \right) < 0. \end{aligned}\)

The determinant corresponding to this Jacobian matrix is given by

$$\begin{aligned} & {\rm{Det}}\left( {\rm{J}} \right) = \left[ {{\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}} + \frac{{\left( {1-{{\upmu }}} \right)\left( {1-\vartheta } \right)}}{{{{\upmu }}\left( {1-\vartheta } \right)-1}}\frac{{\rm{C}}}{{\rm{E}}}\frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}} \right]\left[ {{{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} + \frac{{{\uppi }}}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}-{{{\upvarepsilon }}_{\rm{u}}}} \right)} \right]\\& -\left[ {{\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{E}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}} + \frac{{\left( {1-{{\upmu }}} \right)\left( {1-\vartheta } \right)}}{{{{\upmu }}\left( {1-\vartheta } \right)-1}}\frac{{\rm{C}}}{{\rm{E}}}\left\{ {{{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} + \frac{{{\uppi }}}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}-{{{\upvarepsilon }}_{\rm{u}}}} \right)} \right\}} \right]\frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\\& = {\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}\left[ {{{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} + \frac{{{\uppi }}}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}-{{{\upvarepsilon }}_{\rm{u}}}} \right)} \right]\\& -{\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{E}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}\frac{{{{\uppi \text{E}}}}}{{\rm{K}}}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\\& = {\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}{{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} + {\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}\frac{{{\uppi }}}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}-{{{\upvarepsilon }}_{\rm{u}}}} \right)\\& -{\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}{{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\\& = {\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\upvarepsilon }}_{\rm{u}}}\frac{{{\uppi }}}{\Delta }{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}-{{{\upvarepsilon }}_{\rm{u}}}} \right)\\& -{\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{\vartheta }\frac{{\rm{r}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{\uppi }}\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}-{{{\upvarepsilon }}_{\rm{u}}}} \right)\\& =-{\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}-{{{\upvarepsilon }}_{\rm{u}}}} \right){{\uppi }}\left( {\frac{{{\hat{\rm X}}}}{{{\hat{\rm K}}}} + \frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}} \right)\\& =-{\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}-{{{\upvarepsilon }}_{\rm{u}}}} \right){{\uppi }}\left[ {\frac{1}{\Delta }\left\{ {-{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{k}}}\left( {{{{\upvarepsilon }}_{\rm{u}}} + \frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}} \right)} \right.} \right.\\& + {{{\uptheta }}_{\rm{K}}}\left. {{{{\upvarepsilon }}_{\rm{u}}}\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right\}\left. { + \frac{1}{\Delta }{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}} \right]\\& =-{\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}-{{{\upvarepsilon }}_{\rm{u}}}} \right)\frac{{{\uppi }}}{\Delta }\left[ {\left\{ {-{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{k}}}\left( {{{{\upvarepsilon }}_{\rm{u}}} + \frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}} \right)} \right.} \right.\\& + {{{\uptheta }}_{\rm{K}}}\left. {{{{\upvarepsilon }}_{\rm{u}}}\left( {1 + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right\}\left. { + {{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{L}}}} \right]\\& =-{\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}-{{{\upvarepsilon }}_{\rm{u}}}} \right)\frac{{{\uppi }}}{\Delta }\left\{ {-{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{k}}}\left( {{{{\upvarepsilon }}_{\rm{u}}} + \frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}} \right)} \right. + {{{\uptheta }}_{\rm{K}}}{{{\upvarepsilon }}_{\rm{u}}} + \left. {{{{\upvarepsilon }}_{\rm{u}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right\}\\& =-{\rm{C}}\frac{{\left( {1-{{\uptau }}} \right)}}{{1-{{\upmu }}\left( {1-\vartheta } \right)}}\frac{{\rm{r}}}{{\rm{K}}}\frac{1}{\Delta }{{{\uptheta }}_{\rm{L}}}{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}\left( {{{{\upvarepsilon }}_{\rm{E}}}\frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}-{{{\upvarepsilon }}_{\rm{u}}}} \right)\frac{{{\uppi }}}{\Delta }\left\{ {-{{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}{{{\uptheta }}_{\rm{K}}}\left( {{{{\upvarepsilon }}_{\rm{u}}} + \frac{{\rm{u}}}{{\left( {1-{\rm{u}}} \right)}}} \right)} \right. + \left. {{{{\upvarepsilon }}_{\rm{u}}}\left( {{{{\uptheta }}_{\rm{K}}} + {{\rm{e}}_{11}}\frac{{{{\rm{w}}^2}}}{{\rm{e}}}} \right)} \right\}.\end{aligned}$$

When \({\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}} > {\upvarepsilon }_{{\text{u}}}\), \({\text{Det}}\left( {\text{J}} \right)\) is positive if \(\left( {{\uptheta }_{{\text{K}}} + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right) > 0\); and we assume this to be true.

If the determinant of \({\text{J}}\) is positive, then either all three latent roots are positive or two roots are negative and one root is positive.

Trace of the Jacobian matrix is given by

$$ \begin{aligned} & {\text{Tr}}\left( {\text{J}} \right) = \frac{{\text{X}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}-{\tau r}\left( {1 + \frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} } \right)-{\updelta } + {\uppi }\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} + \frac{{\uppi }}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}-{\upvarepsilon }_{{\text{u}}} } \right) \hfill \\ &= \frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}\left( {\frac{{\text{X}}}{{\text{K}}} + {\uppi }} \right)-{\tau r}\left( {1 + \frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} } \right)-{\updelta } + \frac{{\uppi }}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}-{\upvarepsilon }_{{\text{u}}} } \right) \hfill \\ &= \frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}\left( {\frac{{\text{X}}}{{\text{K}}} + {\uppi }} \right)-{\tau r}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}}-\frac{{\uppi }}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} {\upvarepsilon }_{{\text{u}}}-{\tau r}-{\updelta } + \frac{{\uppi }}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}} \hfill \\& = \frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}\left( {\frac{{\text{X}}}{{\text{K}}} + {\uppi }} \right)-\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} \left( {{\tau r} + {\uppi }} \right)-{\tau r}-{\updelta } + \frac{{\uppi }}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}} \hfill \\ \end{aligned} $$

Here \(\left\{ {\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}\left( {\frac{{\text{X}}}{{\text{K}}} + {\uppi }} \right)-\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} \left( {{\uptau \text{r}} + {\uppi }} \right)} \right\} > 0 \,{\text{and}}\, \left\{ {-{\uptau \text{r}}-{\updelta } + \frac{{\uppi }}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}} \right\} < 0\). So, Trace of the Jacobian matrix is indeterminate in sign.

In order to determine the sign of the latent roots of the \({\text{J}}\) matrix we apply the Routh-Hurwitz Theorem. The characteristic equation obtained from \({\text{J}}\) matrix is given by

$$ - {{\rm{v}}^3} + {\rm{Tr}}\left( {\rm{J}} \right){{\rm{v}}^2} - {\rm{M}}\left( {\rm{J}} \right){\rm{v}} + {\rm{Det}}\left( {\rm{v}} \right) = 0,$$
(76)

where \({\text{v}}\) is the latent root.

Here,

$$ {\text{M}}\left( {\text{J}} \right) = \left\lceil {\begin{array}{*{20}c} {\frac{{\partial {\dot{\text{C}}}}}{{\partial {\text{c}}}}} & {\frac{{\partial {\dot{\text{C}}}}}{{\partial {\text{K}}}}} \\ {\frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{C}}}}} & {\frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}}} \\ \end{array} } \right\rceil + \left\lceil {\begin{array}{*{20}c} {\frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{K}}}}} & {\frac{{\partial {\dot{\text{K}}}}}{{\partial {\text{E}}}}} \\ {\frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{K}}}}} & {\frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}}} \\ \end{array} } \right\rceil + \left\lceil {\begin{array}{*{20}c} {\frac{{\partial {\dot{\text{C}}}}}{{\partial {\text{c}}}}} & {\frac{{\partial {\dot{\text{C}}}}}{{\partial {\text{E}}}}} \\ {\frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{C}}}}} & {\frac{{\partial {\dot{\text{E}}}}}{{\partial {\text{E}}}}} \\ \end{array} } \right\rceil $$

The sign of \({\text{M}}\left( {\text{J}} \right)\) is ambiguous.

The number of positive roots in the characteristic equation (72) is equal to the number of variations of signs in the scheme

$$ \left\{ { - 1,{\text{ Tr}}\left( {\text{J}} \right), - {\text{M}}\left( {\text{J}} \right) + \frac{{{\text{Det}}\left( {\text{J}} \right)}}{{{\text{Tr}}\left( {\text{J}} \right)}},{\text{Det}}\left( {\text{J}} \right)} \right\}. $$
(77)

If the sign of \({\text{M}}\left( {\text{J}} \right)\) is ambiguous, then sign of \(- {\text{M}}\left( {\text{J}} \right) + \frac{{{\text{Det}}\left( {\text{J}} \right)}}{{{\text{Tr}}\left( {\text{J}} \right)}}\) is also ambiguous. Hence the number of positive latent roots can not be obtained in this way.

The number of negative roots will determine the nature of transitional paths around the long-run equilibrium point. In this model, we have two state variables, \({\text{K}}\) and \({\text{E}}\), and only one control variable, \({\text{C}}\). The properties of transitional dynamics depends on the relationship between the number of state variables and the number of negative latent roots. The long run equilibrium is saddle point stable (unstable) if the number of negative latent roots is equal to (less than) the number of state variables. However, it faces indeterminacy with infinite number of transitional path when number of negative latent roots is greater than the number of state variables.Footnote 27 We consider four alternative cases.

Case (i): Trace is positive and \(- {\text{M}}\left( {\text{J}} \right) + \frac{{{\text{Det}}\left( {\text{J}} \right)}}{{{\text{Tr}}\left( {\text{J}} \right)}}\) is positive.

We have only one variation in sign in the scheme (76) in this case. So the characteristic equation (77) has only one positive root and two negative roots; and thus the number of negative latent roots is equal to the number of state variables. Hence the long-run equilibrium point satisfies saddle point stability in this case.

Case (ii): Trace is positive and \(- {\text{M}}\left( {\text{J}} \right) + \frac{{{\text{Det}}\left( {\text{J}} \right)}}{{{\text{Tr}}\left( {\text{J}} \right)}}\) is negative.

We have three variations in sign in the scheme (76). So the characteristic equation (77) has all three positive latent roots. So the number of negative latent roots being zero falls short of the number of state variables. So the long-run equilibrium is unstable in this case.

Case (iii): Trace negative and \(- {\text{M}}\left( {\text{J}} \right) + \frac{{{\text{Det}}\left( {\text{J}} \right)}}{{{\text{Tr}}\left( {\text{J}} \right)}}\) is positive.

We have only one variation in sign in the scheme (76) in this case. So the characteristic equation (77) has only one positive root and two negative roots; and thus the number of negative latent roots is equal to the number of state variables. Hence the long-run equilibrium point satisfies saddle point stability in this case.

Case (iv): Trace negative; \(- {\text{M}}\left( {\text{J}} \right) + \frac{{{\text{Det}}\left( {\text{J}} \right)}}{{{\text{Tr}}\left( {\text{J}} \right)}}\) is negative.

We have only one variation in sign in the scheme (76) in this case. So the characteristic equation (77) has only one positive root and two negative roots; and thus the number of negative latent roots is equal to the number of state variables. Hence the long-run equilibrium point satisfies saddle point stability in this case.

6.3 E.3 Comparative steady state effects

We analyse comparative steady state effects on \({\text{K}}\), \({\text{E}}\) and \({\text{u}}\) with respect to change in \({\uptau }\) when the equilibrium is saddle point stable. \({\text{C}}\) is a jump variable; and its value can be thrown on the saddle path.

From Eq. (24), i.e., with \({\dot{\text{C}}} = 0\) and \({\dot{\text{E}}} = 0\), we have

$$ {\text{C}}\frac{{\left( {1 - {\uptau }} \right)}}{{1 - {\upmu }\left( {1 - \vartheta } \right)}}\frac{{\text{r}}}{{\text{K}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} \frac{{{\text{dK}}}}{{{\text{d}\uptau}}} - {\text{C}}\frac{{\left( {1 - {\uptau }} \right)}}{{1 - {\upmu }\left( {1 - \vartheta } \right)}}\frac{{\text{r}}}{{\text{E}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}\frac{{{\text{dE}}}}{{{\text{d}\uptau}}} = \frac{{{\text{rC}}}}{{1 - {\upmu }\left( {1 - \vartheta } \right)}}. $$
(78)

From Eq. (13), with \({\dot{\text{E}}} = 0\), we have

$$ - \frac{{{\uppi \text{E}}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}}\frac{{{\text{dK}}}}{{{\text{d}\uptau}}} + \left\{ {{\uppi }\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} + \frac{{\uppi }}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} - {\upvarepsilon }_{{\text{u}}} } \right)} \right\}\frac{{{\text{dE}}}}{{{\text{d}\uptau}}} = - {\text{rK}}{.} $$
(79)

Using equations (79) and (80), we have

$$ \begin{gathered} \frac{{{\text{dK}}}}{{{\text{d}\uptau }}} =-\frac{{{\text{rC}}\frac{1}{{1-{\upmu }\left( {1-\vartheta } \right)}}\left[ {\left\{ {{\uppi }\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} + \frac{{\uppi }}{\Delta }{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} \left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}-{\upvarepsilon }_{{\text{u}}} } \right)} \right\}-{\text{K}}\left( {1-{\uptau }} \right)\frac{{\text{r}}}{{\text{E}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}} \right]}}{{{\text{C}}\frac{{\left( {1-{\uptau }} \right)}}{{1-{\upmu }\left( {1-\vartheta } \right)}}\frac{{\text{r}}}{{\text{K}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}-{\upvarepsilon }_{{\text{u}}} } \right)\frac{{\uppi }}{\Delta }\left\{ {-{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{K}}} \left( {{\upvarepsilon }_{{\text{u}}} + \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}} \right)} \right. + \left. {{\upvarepsilon }_{{\text{u}}} \left( {{\uptheta }_{{\text{K}}} + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)} \right\}}} \hfill \\ \mathop \Rightarrow \limits_{ } \frac{{{\text{dK}}}}{{{\text{d}\uptau}}} =-\frac{{{\text{rC}}\frac{1}{{1-{\upmu }\left( {1-\vartheta } \right)}}\left[ {{\uppi }\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}\frac{1}{\Delta }\frac{1}{{\text{E}}}\left\{ {{\uppi \text{E}}-\left( {1-{\uptau }} \right){\text{rK}}} \right\}} \right]}}{{{\text{C}}\frac{{\left( {1-{\uptau }} \right)}}{{1-{\upmu }\left( {1-\vartheta } \right)}}\frac{{\text{r}}}{{\text{K}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}-{\upvarepsilon }_{{\text{u}}} } \right)\frac{{\uppi }}{\Delta }\left\{ {-{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{K}}} \left( {{\upvarepsilon }_{{\text{u}}} + \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}} \right)} \right. + \left. {{\upvarepsilon }_{{\text{u}}} \left( {{\uptheta }_{{\text{K}}} + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)} \right\}}} \hfill \\ \mathop \Rightarrow \limits_{ } \frac{{{\text{dK}}}}{{{\text{d}\uptau}}} =-\frac{{{\text{rC}}\frac{1}{{1-{\upmu }\left( {1-\vartheta } \right)}}\left[ {{\uppi }\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{L}}} {\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}\frac{1}{\Delta }\frac{1}{{\text{E}}}\left\{ {{\uppi \text{E}}-\left( {{\updelta } + {\uprho }} \right){\text{K}}} \right\}} \right]}}{{{\text{C}}\frac{{\left( {1-{\uptau }} \right)}}{{1-{\upmu }\left( {1-\vartheta } \right)}}\frac{{\text{r}}}{{\text{K}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}-{\upvarepsilon }_{{\text{u}}} } \right)\frac{{\uppi }}{\Delta }\left\{ {-{\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{K}}} \left( {{\upvarepsilon }_{{\text{u}}} + \frac{{\text{u}}}{{\left( {1-{\text{u}}} \right)}}} \right)} \right. + \left. {{\upvarepsilon }_{{\text{u}}} \left( {{\uptheta }_{{\text{K}}} + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)} \right\}}}; \hfill \\ \end{gathered} $$
(80)

and

$$ \frac{{{\text{dE}}}}{{{\text{d}\uptau}}} =-\frac{{{\text{rC}}\frac{1}{{1 - {\upmu }\left( {1 - \vartheta } \right)}}\left[ {\frac{{{\uppi \text{E}}}}{{\text{K}}}\frac{{{\hat{\text{X}}}}}{{{\hat{\text{K}}}}} - {\text{K}}\left( {1-{\uptau }} \right)\frac{{\text{r}}}{{\text{K}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\upvarepsilon }_{{\text{u}}} } \right]}}{{{\text{C}}\frac{{\left( {1 - {\uptau }} \right)}}{{1 - {\upmu }\left( {1 - \vartheta } \right)}}\frac{{\text{r}}}{{\text{K}}}\frac{1}{\Delta }{\uptheta }_{{\text{L}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left( {{\upvarepsilon }_{{\text{E}}} \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}} - {\upvarepsilon }_{{\text{u}}} } \right)\frac{{\uppi }}{\Delta }\left\{ { - {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}{\uptheta }_{{\text{K}}} \left( {{\upvarepsilon }_{{\text{u}}} + \frac{{\text{u}}}{{\left( {1 - {\text{u}}} \right)}}} \right)} \right. + \left. {{\upvarepsilon }_{{\text{u}}} \left( {{\uptheta }_{{\text{K}}} + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)} \right\}}}. $$
(81)

For both equation (80) and (81) denominators in the RHS are negative if \(\left( {{\uptheta }_{{\text{K}}} + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right) > 0\) and \({\upvarepsilon }_{{\text{E}}} {\text{u}} > {\upvarepsilon }_{{\text{u}}} \left( {1 - {\text{u}}} \right)\). Numerator of (81) is always positive. Numerator of (81) is positive if \({\uppi \text{E}} < \left( {{\updelta } + {\uprho }} \right){\text{K}}\). Hence, under these conditions, \(\frac{{{\text{dK}}}}{{{\text{d}\uptau}}} > 0\) and \(\frac{{{\text{dE}}}}{{{\text{d}\uptau}}} > 0\).

Using equation (60), we obtain

$$ \frac{{{\text{du}}}}{{{\text{d}\uptau }}} = \frac{{\text{u}}}{\Delta }\left[ { - {\upvarepsilon }_{{\text{E}}} \left\{ { - {\upsigma \text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right.} \right.\left. { + {\uptheta }_{{\text{K}}} \left( {1 + {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}} \right)} \right\}\frac{1}{{\text{E}}}\frac{{{\text{dE}}}}{{{\text{d}\uptau }}} + {\uptheta }_{{\text{K}}} {\text{e}}_{11} \frac{{{\text{w}}^{2} }}{{\text{e}}}\left. {\frac{1}{{\text{K}}}\frac{{{\text{dK}}}}{{{\text{d}\uptau }}}} \right]. $$
(82)

Here also \(\frac{{{\text{du}}}}{{\text{d}\uptau }} < 0\), as \(\frac{{{\text{dE}}}}{{{\text{d}\uptau }}} > 0\) and \(\frac{{{\text{dK}}}}{{{\text{d}\uptau }}} > 0\).

Appendix F

If we assume full employment in the model of the body of the paper; then term \({\upvarepsilon }_{\mathrm{u}}=0\). Then, without using Solow (1979) condition i.e. assuming that \({\upvarepsilon }_{{\text{w}}} \ne 1\), Eqs. (28), (29), (32) and (33) are modified as follows

$$ {\uptheta }_{{\text{L}}} {\hat{\text{w}}} - {\uptheta }_{{\text{L}}} {\hat{\text{e}}} + {\uptheta }_{{\text{K}}} {\hat{\text{r}}} = 0; $$
(83)
$$ {\upvarepsilon }_{{\text{w}}} {\hat{\text{w}}} - {\hat{\text{e}}} = - {\upvarepsilon }_{{\text{E}}} {{\hat{\text{E}}}} ;$$
(84)
$$ {\uptheta }_{{\text{L}}} {{\upsigma \hat{\text{W}}}} - {\uptheta }_{{\text{L}}} {{\upsigma \hat{\text{e}}}} - {\uptheta }_{{\text{L}}} {{\upsigma \hat{\text{r}}}} + {\hat{\text{X}}} = {{\hat{\text{K}};}} $$
(85)

and

$$ - {\uptheta }_{{\text{K}}} {{\upsigma \hat{\text{W}}}} - \left( { - {\uptheta }_{{\text{K}}} {\upsigma } + 1} \right){\hat{\text{e}}} + {\uptheta }_{{\text{K}}} {{\upsigma \hat{\text{r}}}} + {\hat{\text{X}}} = 0. $$
(86)

From Eqs. (83), (84), (85) and (86), we have

$$ \Delta = {\upsigma } + {\upvarepsilon }_{{\text{w}}} \left\{ { - {\upsigma } + {\uptheta }_{{\text{K}}} } \right\}. $$
(87)

Following equations describe the flexible wage full employment model with exogenous labour efficiency.

$$ 1 = {\text{a}}_{{\text{L}}} {\text{w}} + {\text{a}}_{{\text{K}}} {\text{r}}{.} $$
(88)
$$ {\text{a}}_{{\text{K}}} {\text{X}} = {\text{K}}{.} $$
(89)
$$ {\text{a}}_{{\text{L}}} {\text{X}} = {\text{L}}{.} $$
(90)

Here \({\upvarepsilon }_{{\text{w}}} = 0\); and hence from Eq. (87) we have

$$ \Delta = {\upsigma }{.} $$
(91)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M.R., Dutta, P.B. Taxation, capital accumulation, environment and unemployment in an efficiency wage model. J Econ 135, 151–198 (2022). https://doi.org/10.1007/s00712-021-00754-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00712-021-00754-8

Keywords

JEL Classification

Navigation