Skip to main content

Advertisement

Log in

Optimal fiscal policies in an economy with externalities from public spending

  • Published:
Journal of Economics Aims and scope Submit manuscript

Abstract

This paper examines the optimal fiscal policies in an economy with externalities from government expenditure. We extend Lucas (Oxf Econ Pap 42:293–316, 1990) two-sector endogenous growth model and consider the spillover effects from the public spending on infrastructure and education. We compare the optimal fiscal policies derived from the Ramsey allocation problem with those in the centrally-planned economy. The results of this paper are as follows. First, the optimal share of public spending on infrastructure is smaller than its relative contribution in the production function. Next, the optimal share of public spending on education is smaller than its relative contribution in the accumulation of human capital, and does not affect the tax rate of capital income. Finally, the optimal tax rate of capital income is positive if the externality from public productive spending exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The setting of a two-sector endogenous growth model with leisure can also be found in Ladrón-De-Guevara et al. (1999), Jones et al. (1997) and the second model in Jones et al. (1993). Using this setting, Ladrón-De-Guevara et al. (1999) discussed the possible existence of multiple balanced growth paths.

  2. If the return on government bonds is needed to pay the capital taxes, the budget constraint and the no-arbitrage condition between capital and bonds become \(k_{t+1}+b_{t+1}=(1-\tau _{ht})w_t n_t h_t+R_t k_t-c_t+\pi _t + (1-\tau _{kt}) P_t^b b_t,\) and \(R_{t+1}=(1-\tau _{kt+1}) P_{t+1}^b\), respectively. The following solution to the Ramsey allocation problem and the optimal fiscal policies do not change.

  3. Without the No-Ponzi game condition, the intertemporal budget constraint can not be derived. The exposition can be found in Miao (2014).

  4. By combining (6) and (9b), we obtain the equilibrium output of final goods \(y_t=A^{\frac{1}{\alpha +\eta }} g_{yt}^{\frac{1-\alpha -\eta }{\alpha +\eta }} (n_t h_t)^{\frac{\eta }{\alpha +\eta }} k_t^{\frac{\alpha }{\alpha +\eta }}\). Then, we use (6), (9b) and (9c) to obtain the equilibrium output of human accumulation \(x_t=B g_{xt}^{1-\beta } v_t^\gamma h_t^\beta y_t^{1-\beta }.\)

  5. Putting the first-best tax rates (i.e., \(\tau _{kt}=\tau _{ht}=0\) for \(t \ge 1\)) into (9d) yields \(\sum ^\infty _{t=1} \prod ^t_{i=1} R^{-1}_i \left[ G^y_t+G^x_t\right] =\tau _{k0}(r_0-\delta )k_0 +\tau _{h0} w_0 n_0 h_0 -G^y_0-G^x_0 -P_0^b b_0\). However, since the values of \(b_0\), \(\tau _{k0}\) and \(\tau _{h0}\) are taken as given by the planner, the government can not choose \(b_0\), \(\tau _{k0}\) and \(\tau _{h0}\) to balance the intertemporal budget constraint.

  6. The proof is available upon request. Besides, we do not rule out the possibility of indeterminacy.

  7. A similar proposition and proof can also be found in Chari and Kehoe (1999).

  8. The optimal tax rate of labor income can be derived from (5a) in which \(\tau _h=1-\frac{u_2 n}{u_1 \eta y}\).

  9. The optimal tax rate of labor income becomes \(\tau _h=1-\frac{u_2 n}{u_1 (1-\alpha ) y} \ne 0\).

References

  • Agénor PR (2011) Schooling and public capital in a model of endogenous growth. Economica 78:108–132

    Article  Google Scholar 

  • Angelopoulos K, Malley J, Philippopoulos A (2012) Tax structure, growth, and welfare in the UK. Oxf Econ Pap 64:237–258

    Article  Google Scholar 

  • Barro R (1990) Government spending in a simple model of endogenous growth. J Political Econ 98:S103–S125

    Article  Google Scholar 

  • Barro R, Sala-I-Martin X (1992) Public finance in models of economic growth. Rev Econ Stud 59:645–661

    Article  Google Scholar 

  • Blankenau W, Simpson N, Tomljanovich M (2007) Public education expenditures, taxation, and growth: linking data to theory. Am Econ Rev 97:393–397

    Article  Google Scholar 

  • Chamley C (1986) Optimal taxation of capital income in general equilibrium with infinite lives. Econometrica 54:607–622

    Article  Google Scholar 

  • Chari V, Kehoe P (1999) Optimal fiscal and monetary policy. In: Taylor J, Woodford M (eds) Handbook of macroeconomics. Elsevier, Amsterdam, pp 1671–1745

  • Corsetti G, Roubini N (1996) Optimal government spending and taxation in endogenous growth models, nBER working paper 5851

  • Garcia-Castrillo P, Sanso M (2000) Human capital and optimal policy in a Lucas-type model. Rev Econ Dyn 3:757–770

    Article  Google Scholar 

  • Glomm G, Ravikumar B (1992) Public versus private investment in human capital: endogenous growth and income inequality. J Political Econ 100:818–834

    Article  Google Scholar 

  • Glomm G, Ravikumar B (1997) Productive government expenditures and long-run growth. J Econ Dyn Control 21:183–204

    Article  Google Scholar 

  • Glomm G, Ravikumar B (1998) Flat-rate taxes, government spending on education, and growth. Rev Econ Dyn 1:306–325

    Article  Google Scholar 

  • Jones L, Manuelli R, Rossi P (1993) Optimal taxation in models of endogenous growth. J Political Econ 101:485–517

    Article  Google Scholar 

  • Jones L, Manuelli R, Rossi P (1997) On the optimal taxation of capital income. J Econ Theory 73:93–117

    Article  Google Scholar 

  • Judd K (1985) Redistributive taxation in a simple perfect foresight model. J Public Econ 28:59–83

    Article  Google Scholar 

  • Kalaitzidakis P, Tzouvelekas V (2011) On the growth and welfare maximizing allocation of public investment. J Econ 104:127–137

    Article  Google Scholar 

  • King R, Rebelo S (1999) Resuscitating real business cycles. In: Taylor J, Woodford M (eds) Handbook of macroeconomics. Elsevier, Amsterdam, pp 927–1007

  • Kneller R, Bleaney M, Gemmell N (1999) Fiscal policy and growth: evidence from OECD countries. J Public Econ 74:171–190

    Article  Google Scholar 

  • Ladrón-De-Guevara A, Ortigueira S, Santos M (1999) A two-sector model of endogenous growth with leisure. Rev Econ Stud 66:609–631

    Article  Google Scholar 

  • Lucas R (1990) Supply-side economics: an analytical review. Oxf Econ Pap 42:293–316

    Google Scholar 

  • Lucas R, Stokey N (1983) Optimal fiscal and monetary policy in an economy without capital. J Monet Econ 12:55–93

    Article  Google Scholar 

  • Miao J (2014) Economic dynamics in discrete time. MIT Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Hui Lu.

Appendix

Appendix

1.1 The calculation of the centrally-planned problem

The central planner’s objective is to maximize the household’s discounted lifetime utility, (1b), subject to the aggregate goods market clearing constraint, (10), and the accumulation equation of human capital, (11). Let \(\lambda ^1_t\) and \(\lambda ^2_t\) denote the Lagrange multipliers associated with (10) and (11), respectively. The first-order conditions with respect to \(g_{xt}\), \(g_{yt}\), \(c_t\), \(n_t\), \(v_t\), \(k_{t+1}\) and \(h_{t+1}\) are as follows:

$$\begin{aligned}&{\textstyle \lambda ^1_t y_t =\lambda ^2_t (1-\beta ) \frac{x_t}{g_{xt}} }, \end{aligned}$$
(19a)
$$\begin{aligned}&{\textstyle \lambda ^1_t y_t=\lambda ^1_t \frac{1-\alpha -\eta }{\alpha +\eta }(1-g_{xt}-g_{yt})\frac{y_t}{g_{yt}} +\lambda ^2_t \frac{(1-\beta )(1-\alpha -\eta )}{\alpha +\eta } \frac{x_t}{g_{yt}} }, \end{aligned}$$
(19b)
$$\begin{aligned}&u_{1t}=\lambda ^1_t, \end{aligned}$$
(19c)
$$\begin{aligned}&{\textstyle u_{2t}=\lambda ^1_t (1-g_{xt}-g_{yt}) \frac{\eta }{\alpha +\eta } \frac{y_t}{n_t} +\lambda ^2_t\frac{\eta (1-\beta )}{\alpha +\eta } \frac{x_t}{n_t} }, \end{aligned}$$
(19d)
$$\begin{aligned}&{\textstyle u_{2t}=\lambda ^2_t \gamma \frac{x_t}{v_t} }, \end{aligned}$$
(19e)
$$\begin{aligned}&{\textstyle \lambda ^1_t= \frac{1}{1+\rho } \left\{ \lambda ^1_{t+1} \left[ (1-g_{xt+1}-g_{yt+1})\frac{y_{t+1}}{k_{t+1}} \frac{\alpha }{\alpha +\eta }+1-\delta \right] + \lambda ^2_{t+1} \frac{\alpha (1-\beta )}{\alpha +\eta }\frac{x_{t+1}}{k_{t+1}} \right\} }, \nonumber \\\end{aligned}$$
(19f)
$$\begin{aligned}&{\textstyle \lambda ^2_t=\frac{1}{1+\rho } \left\{ \lambda ^2_{t+1}\left[ 1+(-\frac{\alpha (1-\beta )}{\alpha +\eta }+1) \frac{x_{t+1}}{h_{t+1}}\right] +\lambda ^1_{t+1} (1-g_{xt+1}-g_{yt+1})\frac{\eta }{\alpha +\eta }\frac{y_{t+1}}{h_{t+1}} \right\} }.\nonumber \\ \end{aligned}$$
(19g)

Now we can derive the equilibrium conditions in the centrally-planned problem. First, combining (19a) and (19b) yields the value of the public spending on infrastructure, (12a). Next, by substituting (12a), (19a) and (19c) into (19d) we obtain the consumption-leisure tradeoff condition, (12c). Moreover, (12a), (19a), (19d) and (19e) jointly produce the value of public spending on education, (12b). In addition, using (12a), (19a), (19c) and (19f) results in the consumption Euler equation, (12d). Finally, (19a), (19d), (19e) and (19g) together yield the intertemporal condition for the household’s time allocation, (12e).

1.2 The calculation of the Ramsey allocation problem

The planner chooses the allocation including \(g_{yt}\) and \(g_{xt}\) in order to maximize the representative household’s welfare in (1b), subject to the implementability constraint (13), the intertemporal condition for the household’s time allocation (5c), the goods market clearing condition (10) and the accumulation equation of human capital (11). The first-order conditions with respect to \(g_{xt}\), \(g_{yt}\), \(c_t\), \(n_t\), \(v_t\), \(k_{t+1}\) and \(h_{t+1}\) are as follows:

$$\begin{aligned} {\textstyle -\xi ^2_t \frac{(1-\beta ) \Lambda _t}{g_{xt} (1+\rho )} +\xi ^2_{t-1} \frac{\Phi _{t-1}}{\Phi _t} \frac{h_t}{h_{t+1}} \frac{1-\beta }{g_{xt}}-\xi ^3_t y_t + \xi ^4_t (1-\beta ) \frac{x_t}{g_{xt}}=0 }, \end{aligned}$$
(20a)
$$\begin{aligned}&{\textstyle -\xi ^1 u_{1t}\frac{(1-\alpha -\eta )^2}{\alpha +\eta } \frac{y_t}{g_{yt}} -\xi ^2_t \frac{\Lambda _t}{(1+\rho )} \frac{(1-\beta )(1-\alpha -\eta )}{\alpha +\eta } \frac{1}{g_{yt}} +\xi ^2_{t-1} \frac{\Phi _{t-1}}{\Phi _t} \frac{h_t}{h_{t+1}} \frac{1}{g_{yt}} \frac{(1-\beta )(1-\alpha -\eta )}{\alpha +\eta } } \nonumber \\&{\textstyle +\xi ^3_t \left[ -y_t+ \frac{(1-g_{xt}-g_{yt})(1-\alpha -\eta )}{\alpha +\eta } \frac{y_t}{g_{yt}}\right] + \xi ^4_t \frac{(1-\beta )(1-\alpha -\eta )}{\alpha +\eta } \frac{x_t}{g_{yt}}=0 }, \end{aligned}$$
(20b)
$$\begin{aligned} {\textstyle u_{1t}+\xi ^1 \{ u_{11t}[c_t-(1-\alpha -\eta )y_t]+u_{1t} \} -\xi ^3_t=0 }, \end{aligned}$$
(20c)
$$\begin{aligned}&{\textstyle -u_{2t}+\xi ^1 \left[ -u_{1t} \frac{(1-\alpha -\eta )\eta }{\alpha +\eta } \frac{y_t}{n_t}+ u_{22t}n_t-u_{2t}\right] +\xi ^2_t \left[ \frac{-u_{22t}}{u_{2t+1}}-\frac{1}{1+\rho } \frac{\eta (1-\beta )}{\alpha +\eta } \frac{\Lambda _t}{n_t}\right] } \nonumber \\&{\textstyle + (1+\rho )\xi ^2_{t-1} \{ \frac{u_{2t-1} u_{22t}}{(u_{2t})^2}-\frac{\Phi _{t-1}}{(1+\rho )} [1-\frac{\eta (1-\beta )}{\alpha +\eta }\frac{1}{\Phi _t} \frac{h_t}{h_{t+1}} \frac{1}{n_t}] \} } \nonumber \\&{\textstyle +\xi ^3_t (1-g_{xt}-g_{yt}) \frac{y_t}{n_t} \frac{\eta }{\alpha +\eta } + \xi ^4_t \frac{\eta (1-\beta )}{\alpha +\eta } \frac{x_t}{n_t} =0 }, \end{aligned}$$
(20d)
$$\begin{aligned}&{\textstyle -u_{2t}+ \xi ^1 u_{22t} n_t +\xi ^2_t \left[ \frac{-u_{22t}}{u_{2t+1}}-\frac{\gamma -1}{1+\rho } \frac{\Lambda _t}{v_t}\right] } \nonumber \\&{\textstyle +(1+\rho )\xi ^2_{t-1}\left[ \frac{u_{2t-1} u_{22t}}{(u_{2t})^2}-\frac{\Phi _{t-1}}{(1+\rho )}( \frac{1}{\Phi _t} \frac{h_t}{h_{t+1}} \frac{1-\gamma }{v_t} +\frac{\beta }{\gamma })\right] +\xi ^4_t \gamma \frac{x_t}{v_t} =0 }, \end{aligned}$$
(20e)
$$\begin{aligned}&{\textstyle -\xi ^1 \frac{u_{1t+1}}{1+\rho } \frac{(1-\alpha -\eta )\alpha }{\alpha +\eta } \frac{y_{t+1}}{k_{t+1}} +\frac{\xi ^2_t}{1+\rho } \frac{\Phi _t}{\Phi _{t+1}} \frac{h_{t+1}}{h_{t+2}} \frac{\alpha (1-\beta )}{\alpha +\eta } \frac{1}{k_{t+1}}- \frac{\xi ^2_{t+1}}{1+\rho } \frac{\Lambda _{t+1}}{1+\rho } \frac{\alpha (1-\beta )}{\alpha +\eta } \frac{1}{k_{t+1}} } \nonumber \\&{\textstyle - \xi ^3_t +\frac{\xi ^3_{t+1}}{1+\rho } \left[ \frac{(1-g_{xt+1}-g_{yt+1})\alpha }{\alpha +\eta } \frac{y_{t+1}}{k_{t+1}}+1-\delta \right] +\frac{\xi ^4_{t+1}}{1+\rho } \frac{\alpha (1-\beta )}{\alpha +\eta } \frac{x_{t+1}}{k_{t+1}}=0 }, \end{aligned}$$
(20f)
$$\begin{aligned}&{\textstyle \!-\! \frac{\xi ^1 u_{1t+1}}{1\!+\!\rho } \frac{(1-\alpha -\eta )\eta }{\alpha +\eta } \frac{y_{t+1}}{h_{t+1}} \!+\!\frac{\xi ^2_t}{1+\rho } \left[ \frac{\Lambda _t}{h_{t+1}}\!-\! \frac{\Phi _t}{\Phi _{t+1}} \frac{1}{h_{t+2}} \frac{\alpha (1-\beta )}{\alpha +\eta }\right] \!-\!\frac{\xi ^2_{t+1}}{(1+\rho )^2} \left[ -\frac{\alpha (1-\beta )}{\alpha +\eta }+1\right] \frac{\Lambda _{t+1}}{h_{t+1}} } \nonumber \\&{\textstyle + \frac{\xi ^3_{t+1}}{1+\rho } \frac{(1-g_{xt+1}-g_{yt+1})\eta }{\alpha +\eta } \frac{y_{t+1}}{h_{t+1}} -\xi ^4_t +\frac{\xi ^4_{t+1}}{1+\rho } \left[ 1+(\frac{-\alpha (1-\beta )}{\alpha +\eta }+1)\frac{x_{t+1}}{h_{t+1}}\right] =0 }, \end{aligned}$$
(20g)

where \(\Lambda _t \equiv {\textstyle \frac{\gamma x_t}{v_t} \left[ \frac{ n_{t+1}}{h_{t+1}} + \frac{ v_{t+1}}{\gamma x_{t+1}} (1+\beta \frac{x_{t+1}}{h_{t+1}})\right] }\) and \(\Phi _t \equiv \frac{\gamma x_t}{v_t h_{t+1}}\).

Now we need to prove that consumption \(c_t\), physical capital \(k_t\), and human capital \(h_t\) all grow at the same rate, denoted by \(\theta \), and \(\xi ^3_t k_t\) and \(\xi ^4_t k_t\) are constant in the long run. First, we define \(\frac{h_{t+1}-h_t}{h_t}\equiv \theta _t\) which is constant in the long run. In addition, \(\Lambda =1+\rho \) and \(\Phi =\frac{\gamma }{v} \frac{\theta }{1+\theta }\) in the long run. According to (3) and (11), we obtain that \(\frac{x_t}{h_t}=\theta _t\), and thus \(\frac{h_t}{k_t}\) is constant in the long run. Since \(\frac{y_t}{k_t}=A^{\frac{1}{\alpha +\eta }} g_{yt}^{\frac{1-\alpha -\eta }{\alpha +\eta }} n_t^{\frac{\eta }{\alpha +\eta }} \left( \frac{h_t}{k_t}\right) ^{\frac{\eta }{\alpha +\eta }}\), thus \(\frac{y_t}{k_t}\) is constant in the long run. Besides, (10) suggests that \(\theta _t+\delta +\frac{c_t}{k_t}=(1-g_{yt}-g_{xt}) \frac{y_t}{k_t}\), so that \(\frac{c_t}{k_t}\) is also constant in the long run.

Moreover, combining (20b) and (20c), along with (20a), we obtain that \(1+\xi ^3_t k_t \left[ (1-\frac{g_{yt}}{1-\alpha -\eta })\frac{y_t}{k_t}-\frac{c_t}{k_t}\right] =0\). Thus \(\xi ^3_t k_t\) is constant in the long run. As (20b) implies that \(\xi ^1=\xi ^3_t k_t \frac{c_t}{k_t} \left[ \frac{1-\alpha -\eta -g_{yt}}{(1-\alpha -\eta )^2}\right] \), by using the conclusion that \(\xi ^3_t k_t\) is a constant, we obtain that \(\xi ^1\) is constant in the long run.

Furthermore, combining (20a) and (20d) provides that \(-u_{2t}+\xi ^1 \left[ u_{22t}n_t-u_{2t}-\frac{(1-\alpha -\eta )\eta }{\alpha +\eta } \frac{1}{n_t} \frac{k_t}{c_t} \frac{y_t}{k_t}\right] -\xi ^2_t \frac{u_{22t}}{u_{2t+1}} + (1+\rho )\xi ^2_{t-1} \left[ \frac{u_{2t-1} u_{22t}}{(u_{2t})^2}-\frac{\Phi _{t-1}}{(1+\rho )}\right] +\xi ^3_t k_t (1-g_{yt}) \frac{1}{n_t} \frac{y_t}{k_t} \frac{\eta }{\alpha +\eta }=0 \), in which we can conclude that \(\xi ^2_t=\xi ^2_{t-1}\) is constant in the long run. Finally, (20a) suggests that \(-\xi ^2_t + \frac{\xi ^2_{t-1}}{1+\theta }- \xi ^3_t k_t \frac{y_t}{k_t} \frac{g_{xt}}{1-\beta }+\xi ^4_t k_t \theta \frac{h_t}{k_t} =0\). Thus \(\xi ^4_t k_t\) is also a constant in the long run. In order to analyze the BGP, we define \(\xi ^3_t k_t \equiv \xi _3\) and \(\xi ^4_t k_t \equiv \xi _4\), and denote \(\xi _2\) as the value of \(\xi ^2_t\) along the BGP.

In the BGP, (5c) becomes

$$\begin{aligned} {\textstyle 1+\beta \theta -(1+\rho )(1+\theta )=-\frac{\theta \gamma n}{v}}. \end{aligned}$$
(21)

The first-order conditions (20a)–(20g) in the BGP can be rearranged as follows:

$$\begin{aligned}&{\textstyle -\xi _2 \frac{\theta }{1+\theta }-\xi _3 \frac{y}{k} \frac{g_x}{1-\beta } +\xi _4 \frac{h}{k} \theta =0 }, \end{aligned}$$
(22a)
$$\begin{aligned}&{\textstyle \xi _3\left[ 1-\frac{g_y}{(1-\alpha -\eta )}\right] =\xi ^1 \frac{k}{c}(1-\alpha -\eta ) }, \end{aligned}$$
(22b)
$$\begin{aligned}&{\textstyle 1+\xi ^1 (1-\alpha -\eta )\frac{y}{k}\frac{k}{c}=\xi _3\frac{c}{k} }, \end{aligned}$$
(22c)
$$\begin{aligned}&{\textstyle -u^2+\xi _2 \left[ \frac{\rho u_{22}}{u_2}- \frac{\gamma }{v} \frac{\theta }{1+\theta }\right] } {\textstyle +\xi _3 \frac{g_y \eta }{1-\alpha -\eta }\frac{y}{k n} +\xi ^1\left[ u_{22}n-u_2\right] =0 }, \end{aligned}$$
(22d)
$$\begin{aligned}&{\textstyle -u^2+\xi _2\left[ \frac{\rho u_{22}}{u_2}+ \frac{\theta }{1+\theta } \frac{1-\gamma -\beta }{v}\right] +\xi _4 \frac{\gamma }{v} \frac{h}{k} \theta +\xi ^1 u_{22}n=0 }, \end{aligned}$$
(22e)
$$\begin{aligned}&{\textstyle -(1+\rho )(1+\theta )+\frac{\alpha g_y y}{(1-\alpha -\eta )k}+1-\delta =0 }, \end{aligned}$$
(22f)
$$\begin{aligned}&{\textstyle \xi _2\left[ 1+\rho -\beta -\frac{1-\beta }{1+\theta }\right] } {\textstyle + \xi _3 \frac{g_y \eta }{1-\alpha -\eta } \frac{y}{k} +\xi _4 \frac{h}{k} \left[ 1+\beta \theta -(1+\rho )(1+\theta )\right] =0 }.\nonumber \\ \end{aligned}$$
(22g)

It is worth noting that (22b) is the optimality condition with respect to \(g_y\) in the long run, i.e., (16), and (22f) is the optimality condition with respect to \(k_{t+1}\) in the long run, i.e., (18a). Due to the binding implementability constraint and the goods market clearance condition, i.e., \(\xi ^1>0\) and \(\xi _3>0\), (22b) gives rise to \(g_y<1-\alpha -\eta \).

Moreover, by combining (22d) with (22e), along with (22a), we obtain the following equation:

$$\begin{aligned} {\textstyle \xi _2 \frac{\theta }{1+\theta } \frac{\beta -1}{v} +\xi _3 \frac{y}{k n} \frac{g_y \eta }{1-\alpha -\eta } =\xi _4 \frac{h}{k} \theta \frac{\gamma }{v} +\xi ^1 u_2 }. \end{aligned}$$
(23a)

We then use (21), (22g) and (23a) to derive the value of \(\xi _2\) as follows:

$$\begin{aligned} {\textstyle -\xi _2 \left[ \frac{\theta }{1+\theta }\frac{1-\beta }{v} n+\rho + \frac{(1-\beta )\theta }{1+\theta }\right] =\xi ^1 u_2 n }. \end{aligned}$$
(23b)

According to (23b), we obtain that \(\xi _2<0\).

Finally, putting the combination of (23a) and (23b) into (22a), along with (21), yields the condition with respect to \(g_x\) in the long run, i.e., (17).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, CH. Optimal fiscal policies in an economy with externalities from public spending. J Econ 116, 211–228 (2015). https://doi.org/10.1007/s00712-015-0433-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00712-015-0433-9

Keywords

JEL Classification

Navigation