Skip to main content
Log in

Isomorphism in pyroxmangite-type pyroxenoids: Mg-rich pyroxmangite from sanidinite of the Eifel paleovolcanic region, Rhineland-Palatinate, Germany

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The crystal structure of Mg-rich pyroxmangite from sanidinite of the Laach Lake (Laacher See) Volcano, Eifel paleovolcanic region, Rhineland-Palatinate, Germany has been solved based on single-crystal X-ray diffraction data, the final R indices for all data are: R1 = 0.0302, wR2 = 0.0617. Parameters of the triclinic unit cell are: a = 9.6410(4), b = 10.4328(6), c = 17.3419(9) Å, α = 112.256(5), β = 102.806(4), γ = 82.935(4)°, V = 1572.72(15) Å3. Space group is C-1. The empirical formula of the studied sample is Mn3.48Mg1.78Fe1.61Ca0.13(Si7.00O21), and the refined crystal-chemical formula is M1[(Mn,Fe)0.90Mg0.10] M2[(Mn,Fe)0.93Mg0.07] M3[(Mn,Fe)0.84Mg0.16] M4[(Mn,Fe)0.63Mg0.37] M5[(Mn,Fe)0.74Mg0.26] M1[(Mn,Fe)0.69Mg0.31] M1[(Mn,Fe)0.54Mg0.46] [Si7O21]. This sample is characterized by a stronger disordering of Mg among the M sites as compared to Mg-rich members of the pyroxmangite-pyroxferroite solid-solution series from xenoliths hosted by basalt of the Bellerberg volcano, Eifel. The genetic factors which could influence to the cation ordering in pyroxmangite-type minerals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angel RJ, Price GD, Putnis A (1984) A mechanism for pyroxene-pyroxenoid and pyroxenoid-pyroxenoid transformation. Phys Chem Miner 10:236–243

    Article  Google Scholar 

  • Berndt J, Holtz F, Koepke J (2001) Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See Volcano. Contrib Mineral Petrol 140:469–486

    Article  Google Scholar 

  • Birch WD (1999) Minerals of Broken Hill. Broken Hill City Council, Australia.

  • Blass G, Graf HW (2001) Neue Mineralienfunde aus der Vulkaneifel. Mineralien-Welt 12(1):17–25 ((in German))

    Google Scholar 

  • Blass G, Ternes B (1994) Über den Erstfund von Pyroxmangit vom Bellerberg bei Ettringen in der Vulkaneifel. Mineralien-Welt 05(2):41–42 ((in German))

    Google Scholar 

  • Brusnitsyn AI (2000) Rhodonite Deposits of Middle Urals (Mineralogy and Genesis). Petersburg University (in Russian), St

    Google Scholar 

  • Brusnitsyn AI (2013) Mineralogy of Manganese Metasedimentary Rocks of South Urals. Petersburg University (in Russian), St

    Google Scholar 

  • Brusnitsyn AI (2015) Parnokskoe Manganese Deposit, Polar Urals: Mineralogy. St. Petersburg University (in Russian), Geochemistry and Genesis of Ores

    Google Scholar 

  • Chukanov NV, Krivovichev SV, Pakhomova AS, Pekov IV, Schäfer Ch, Vigasina MF, Van KV (2014) Laachite, (Ca, Mn)2Zr2Nb2TiFeO14, a new zirconolite-related mineral from the Eifel volcanic region, Germany. Eur J Mineral 26:103–111

    Article  Google Scholar 

  • Chukanov NV, Aksenov SM, Rastsvetaeva RK, Van KV, Belakovskiy DI, Pekov IV, Gurzhiy VV, Schüller W, Ternes B (2015) Mendigite, Mn2Mn2MnCa(Si3O9)2, a new mineral species of the bustamite group from the Eifel volcanic region. Germany Geol Ore Dep 57(8):721–731

    Article  Google Scholar 

  • Dasgupta S, Banerjee H, Fukuoka M, Bhattacharya PK, Roy S (1990) Petrogenesis of metamorphosed manganese deposits and the nature of the precursor sediments. Ore Geo Rev 5:359–384

    Article  Google Scholar 

  • Finger LW, Hazen RM (1978) Refined occupancy factors for synthetic Mn-Mg pyroxmangite and rhodonite. Carnegie Inst Washington Yearb 77:850-853S

    Google Scholar 

  • Frechen J (1947) Vorgänge der Sanidinit-Bildung im Laacher Seegebiet. Fortschr Mineral 26:147–166

    Google Scholar 

  • Frechen J (1976) Siebengebirge am Rhein, Laacher Vulkangebiet, Maargebiet der Westeifel. Sammlung geologischer Führer 56, 3. Auflage. Stuttgart, Schweitzerbart, 209 p. (in German).

  • Gagné OC, Hawthorne FC (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Cryst B71:562–578

    Google Scholar 

  • Gordon WA, Peacor DR, Brown PE, Essene EJ (1981) Exsolution relationships in clinopyroxene of average composition Ca0.43Mn0.69Mg0.82Si2O6: X-ray diffraction and analytical electron microscopy. Am Mineral 66:127–141

    Google Scholar 

  • Grapes R (2011) Pyrometamorphism, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Harms E, Gardner JE, Schmincke HU (2004) Phase equilibria of the Lower Laacher See Tephra (East Eifel, Germany): constraints on pre-eruptive storage conditions of a phonolitic magma reservoir. J Volcanol Geotherm Res 134:135–148

    Article  Google Scholar 

  • Hentschel G (1987) Die Mineralien der Eifelvulkane. Weise Verlag, München (in German)

    Google Scholar 

  • Hentschel G (1990) Die Minerale in Auswürflingen des Laacher-See–Vulkans. Der Aufschluss. Sonderband (special Issue) 33:65–105 ((in German))

    Google Scholar 

  • Huebner JS (1986) Nature of phases synthesized along the join (Mg, Mn)2Si2O6. Am Mineral 71:111–122

    Google Scholar 

  • Ito J (1972) Rhodonite-pyroxmangite peritectic along the join MnSiO3-MgSiO3 in air. Am Mineral 57:865–876

    Google Scholar 

  • Iwabuchi Y, Hariya Y (1985) Phase equilibria on the join MgSiO3-MnSiO3 at high pressure and temperature. Mineral J 12(7):319–331

    Article  Google Scholar 

  • Kobayashi H (1977) Kanoite, (Mn2+, Mg)2[Si2O6], a new clinopyroxene in the metamorphic rock from Tatehira, Oshima Peninsula, Hokkaido. Japan J Geol Soc Japan 83(8):537–542

    Google Scholar 

  • Liebau F (1962) Die systematik der silikate. Naturwissenschaften 49:481–491

    Article  Google Scholar 

  • Mason B (1973) Manganese silicate minerals from Broken Hill, New South Wales. J Geol Soc Aust 20:397–404

    Article  Google Scholar 

  • Minerals (1981) Reference book vol 3, part. 2, Nedra Publishing, Moscow (in Russian).

  • Momoi H (1964) Mineralogical study of rhodonites in Japan, with special reference to contact metamorphism. Mem Fac Sci Kyushu Univ, Ser. D. Geology 25(1):39–63

  • Momoi H (1974) Hydrothermal crystallization of MnSiO3 polymorphs. Mineral J 7(4):359–373

    Article  Google Scholar 

  • Narita H (1973) Crystal chemistry of pyroxene and pyroxenoid polymorphs of MnSiO3. Dr. thesis, Osaka University, Osaka.

  • Narita H, Koto K, Morimoto N (1977) The crystal structures of MnSiO3 polymorphs (rhodonite- and pyroxmangite-type). Mineral J Sapp 8:329–342

    Article  Google Scholar 

  • Ohashi Y, Finger LW (1975) Pyroxenoids: A comparison of refined structures of rhodonite and pyroxmangite. Carneg Inst Washin, Year Book 74:564–569

    Google Scholar 

  • Peters T (1971) Pyroxmangite: Stability in H2O-CO2 mixtures at a total pressure of 2000 bars. Contrib Mineral Petrol 32:267–273

    Article  Google Scholar 

  • Pinckney LR, Burnham CW (1988) Effects of compositional variation on the crystal structures of pyroxmangite and rhodonite. Am Mineral 73:98–808

    Google Scholar 

  • Pinckney LR, Finger LW, Hazen RM, Burnham CW (1981) Crystal structure of pyroxmangite at high temperature. Carneg Inst Washin, Year Book 80:380–384

    Google Scholar 

  • Prewitt CT, Peacor DR (1964) Crystal chemistry of the pyroxenes and pyroxenoids. Am Mineral 49:1527–1542

    Google Scholar 

  • Rout SS, Wörner G (2020) Constraints on the pre-eruptive magmatic history of the Quaternary Laacher See volcano (Germany). Contrib Mineral Petrol 175:73

    Article  Google Scholar 

  • Schmitt AK, Wetzel F, Cooper KM, Zou H, Wörner G (2010) Magmatic longevity of Laacher See volcano (Eifel, Germany) indicated by U-Th dating of intrusive carbonatites. J Petrol 51:1053–1085

    Article  Google Scholar 

  • Shchipalkina NV, Aksenov SM, Chukanov NV, Pekov IV, Rastsvetaeva RK, Schafer C, Ternes B, Shuller W (2016) Pyroxenoids of pyroxmangite-pyroxferroite series from xenoliths of Bellerberg paleovolcano (Eifel, Germany): chemical variations and specific features of cation distribution. Crystallogr Rep 61(6):931–939

    Article  Google Scholar 

  • Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  • Sundermeyer C, Gätjen J, Weimann L, Wörner G (2020) Timescales from magma mixing to eruption in alkaline volcanism in the Eifel volcanic fields, western Germany. Contrib Mineral Petrol 175:77

    Article  Google Scholar 

  • Takeuchi Y, Koto K (1976) A systematics of pyroxenoid structures. Mineral J 8(5):272–285

    Article  Google Scholar 

  • Takeuchi Y (1977) Designation of cation sites in pyroxenoids. Mineral J 8:431–438

    Article  Google Scholar 

  • Tokohami M, Horiuchi H, Nakano A, Akimoto SI, Morimoto N (1979) The crystal structure of the pyroxene-type MnSiO3. Mineral J 9:424–426

    Article  Google Scholar 

  • Walters SG (1998) Broken Hill-type deposits. J Aust Geol Geophys 17(4):229–237

    Google Scholar 

  • Watanabe T (1960) Characteristic features of ore deposits found in contact-metamorphic aureoles in Japan. Int Geol Rev 2(11):946–966

    Article  Google Scholar 

  • Zanazzi PF, Nestola F, Nazzareni S, Comodi P (2008) Pyroxmangite: a high-pressure single-crystal study. Am Mineral 93:1921–1928

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous reviewers for their valuable comments and notes. This work was supported by the Russian Science Foundation, project no. 19-17-00050. A part of this work (IR spectroscopy and chemical analysis of pyroxmangite from the Laach Lake volcano) was carried out in accordance with the state task of Russian Federation, state registration No. AAAA-A19-1190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda V. Shchipalkina.

Additional information

Editorial handling: L. Bindi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchipalkina, N.V., Chukanov, N.V., Zubkova, N.V. et al. Isomorphism in pyroxmangite-type pyroxenoids: Mg-rich pyroxmangite from sanidinite of the Eifel paleovolcanic region, Rhineland-Palatinate, Germany. Miner Petrol 115, 631–641 (2021). https://doi.org/10.1007/s00710-021-00763-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-021-00763-x

Keywords

Navigation