Skip to main content
Log in

Ba- and Ti-rich oxymica from nephelinites in the Middle Atlas Volcanic Province, northern Morocco

  • Short Communication
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A Ba- and Ti-rich mica (up to 14.0 wt% BaO and 13.1 wt% TiO2) occurs in nephelinites from the Middle Atlas Volcanic Province, Morocco. The rocks show a porphyritic texture composed of olivine, Ti-rich augite, nepheline and Ti-rich magnetite. Oxyphlogopite is found in secondary assemblages consisting of zeolites, clinopyroxene and Ti-oxides. This mineral occurs mostly as euhedral to subhedral crystals lining the walls of zeolitic veinlets and cavities in the nephelinites. The coupled substitutions of (1) Ba for K in the interlayer site and Si for Al in the tetrahedral site and (2) Ti4+ for Mg in the octahedral site and O2− in the (OH, F) site are major mechanisms of Ba and Ti incorporation in these micas. The average structural formula, calculated on the basis of 12 (O, OH, F, Cl), is (Si2.515-Al1.482-Fe3+0.003)4.000 (Al0.050-Ti0.661-Fe2+0.798-Mn0.012-Mg1.500)3.021 (Ca0.014-Ba0.398-Na0.066-K0.502)0.980 O10 (F0.308-Cl0.009-O1.319-OH0.365)2.001, suggesting a combination of oxyphlogopite and oxykinoshitalite, with contribution from the hypothetical end-member “Ti-eastonite”. Ba- and Ti-rich oxymica in the nephelinites may have crystallized under the influence of Ba-rich fluids derived from nephelinitic melts during late magmatic stages. The Ba enrichment in the host nephelinites indicates a lithospheric mantle source enriched by the circulation of metasomatic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allègre CJ, Treuil M, Minster JF, Minster B, Albarède F (1977) Systematic use of trace element in igneous processes. Part I: fractional crystallization processes in volcanic suites. Contrib Mineral Petrol 60:57–75

    Article  Google Scholar 

  • Azzone RG, Ruberti E, Enrich GER, Gomes CB (2009) Zr and Ba-rich minerals from the Ponte Nova alkaline mafic-ultramafic massif, southeastern Brazil: indication of an enriched mantle source. Can Mineral 47:1087–1113

    Article  Google Scholar 

  • Bigi S, Brigatti MF, Mazzucchelli M, Rivallenti G (1993) Crystal chemical variations in Ba-rich biotites from gabbroic rocks of lower crust (Ivrea zone, NW Italy). Contrib Mineral Petrol 113:87–99

    Article  Google Scholar 

  • Birch WD (1978) Mineralogy and geochemistry of the leucitite at Cosgrave, Victoria. J Geol Soc Aust 2:369–385

    Article  Google Scholar 

  • Boctor NZ, Yoder HS Jr (1986) Petrology of some melilite-bearing rocks from Cape Province, Republic of South Africa: relationship to kimberlites. Am J Sci 286:513–539

    Article  Google Scholar 

  • Bol LCGM, Bos A, Sauter PCC, Jansen JBH (1989) Barium-titanium-rich phlogopites in marbles from Rogaland, Southwest Norway. Am Mineral 74:439–447

    Google Scholar 

  • Bosch D, Maury R, El Azzouzi M, Bollinger C, Bellon H, Verdoux P (2014) Lithospheric origin for Neogene–quaternary Middle Atlas lavas (Morocco): clues from trace elements and Sr–Nd–Pb–Hf isotopes. Lithos 250:247–265

    Article  Google Scholar 

  • Chukanov NV, Mukhanova AA, Rastsvetaeva RK, Belakovskiy DI, Möckel S, Karimova OV, Britvin SN, Krivovichev SV (2011) Oxyphlogopite K(Mg,Fe,Ti)3[(Si,Al)4O10](O,F)2, a new mica group. Geol Ore Deposit 53:583–590

    Article  Google Scholar 

  • Dyar MD, Guidotti CV, Holdaway MJ, Colucci M (1993) Nonstoichiometric hydrogen contents in common rock-forming hydroxyl silicates. Geochim Cosmochim Acta 57:2913–2918

    Article  Google Scholar 

  • Dymek RF (1983) Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. Am Mineral 68:880–899

    Google Scholar 

  • Edgar AD (1992) Barium-rich phlogopite and biotite from some quaternary alkali mafic lavas, west Eifel, Germany. Eur J Mineral 4:321–330

    Article  Google Scholar 

  • El Azzouzi M, Maury RC, Bellon H, Youbi N, Cotton J, Kharbouch F (2010) Petrology and K-Ar chronology of the Neogene-quaternary Middle Atlas basaltic province, Morocco. Bull Soc Géol France 3:243–257

    Article  Google Scholar 

  • Foley SF (1990) Experimental constraints on phlogopite chemistry in lamproites. II effect of pressure-temperature variations. Eur J Mineral 2:327–341

    Article  Google Scholar 

  • Harmand C, Cantagrel JM (1984) Le volcanisme alcalin tertiaire et quaternaire du Moyen Atlas (Maroc) : chronologie K/Ar et cadre géodynamique. J Afr Earth Sci 2:51–55

    Google Scholar 

  • Henderson CMB, Foland KA (1996) Ba- and Ti-rich primary biotite from the brome alkaline igneous complex, Monteregian Hills, Quebec: mechanisms of substitution. Can Mineral 34:1241–1252

    Google Scholar 

  • Holm PM (1982) Mineral chemistry of perpotassic lavas of the Vulsinian district, the Roman Province, Italy. Mineral Mag 46:379–386

    Article  Google Scholar 

  • Ibhi A, Nachit H (2000) The substitution mechanism of Ba and Ti into phyllosilicate phases: the example of barium–titanitum biotite. Ann Chim Sci Mater 25:627–634

    Article  Google Scholar 

  • Ibhi A, Nachit H, El Abia H (2005) Titanium and barium incorporation into the phyllosilicate phases: the example of phlogopite- kinoshitalite solid solution. J Phys IV 123:331–335

    Google Scholar 

  • Kogarko LN, Uvarova YA, Sokolova E, Hawthorne FC, Ottolini L, Grice JD (2005) Oxykinoshitalite, a new species of mica from Fernando de Noronha Island, Pernambuco, Brazil: occurrence and crystal structure. Can Mineral 43:1501–1510

    Article  Google Scholar 

  • Kogarko LN, Ryabchikov ID, Kuzmin DV (2012) High-Ba mica in olivinites of the Guli massif (Maimecha–Kotui province, Siberia). Russ Geol Geophys 53:1209–1215

    Article  Google Scholar 

  • Mansker WL, Ewing RC, Keil K (1979) Barian-titanian biotites in nephelinites from Oahu, Hawaii. Am Mineral 64:156–I 59

    Google Scholar 

  • Martin J (1981) Le Moyen Atlas central, étude géomorphologique. Edition du Service géologique du Maroc, Rabat

    Google Scholar 

  • Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum press, New York

    Book  Google Scholar 

  • Mitchell RH, Platt RG (1984) The Freemans cove volcanic suite: field relations, petrochemistry, and tectonic setting of nephelinite-basanite volcanism associated with rifting in the Canadian Arctic archipelago. Can J Earth Sci 21:428–436

    Article  Google Scholar 

  • O’Brien HE, Irving A, McCallum IS (1988) Complex zoning and Resorption of Phenocrysts in mixed Potassic mafic magmas of the Highwood Mountains, Montana. Am Mineral 73:1007–1024

    Google Scholar 

  • Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘PAP’. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum Press, New York, pp 31–75

    Chapter  Google Scholar 

  • Reguir EP, Chakhmouradian AR, Halden NM, Malkovets VG, Yang P (2009) Major- and trace-element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator. Lithos 112S:372–384

    Article  Google Scholar 

  • Rieder M, Cavazzini G, D'yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Müller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of the micas. Clay Clay Miner 46:586–595

    Article  Google Scholar 

  • Sharygin VV (2009) Ba-Ti-rich oxymicas from olivine melanephelinites of the Udokan lava field, Siberia, Russia: chemistry and substitutions. Abstr XXVI Intern Conf School "Geochemistry of magmatic rocks", Moscow, pp 132–134

  • Sharygin VV, Schiazza M, Stoppa F (2011) Ba-Ti-rich micas from alkali Si-undersaturated rocks of the Calatrava volcanic field, Central Spain. 28 Intern Conf School "Geochemistry of Alkaline Rocks", Minsk, pp 196–198

  • Shaw CSJ, Penczak RS (1996) Barium- and titanium-rich biotite and phlogopite from the western and eastern gabbro, Coldwell alkaline complex, northwestern Ontario. Can Mineral 34:967–975

    Google Scholar 

  • Solie DN, Su SC (1987) An occurrence of Ba-rich micas from the Alaska range. Am Mineral 72:995–999

    Google Scholar 

  • Späth A, Le Roex A, Opiyo-Akech N (2001) Plume–lithosphere interaction and the origin of continental rift-related alkali volcanism–the Chyulu Hills volcanic province, southern Kenya. J Petrol 42:765–787

    Article  Google Scholar 

  • Sun, SS McDonough WF (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (Eds.), Magmatism in the Ocean Basins. Geol Soc London Spec Publ 42:313–345.

  • Thompson RN (1977) Primary basalts and magma genesis .III. Alban Hills, Roman comagmatic province, central Italy. Contrib Mineral Petrol 60:91–108

    Article  Google Scholar 

  • Velde D (1979) Trioctahedral micas in melilite-bearing eruptive rocks. Carnegie Inst Wash Yearb 78:468–475

    Google Scholar 

  • Wagner C, Velde D (1986) The mineralogy of K-richterite-bearing lamproites. Am Mineral 71:17–37

    Google Scholar 

  • Wendlandt RF (1977) Barium-phlogopite from haystack Butte, Highwood mountains, Montana. Carnegie Inst Wash Yearb 76:534–539

    Google Scholar 

  • Zhang M, Suddaby P, Thompson NR, Dungan MA (1993) Barian-titanian phlogopite from potassic lavas in Northeast China: chemistry, substitutions and paragenesis. Am Mineral 78:1056–1065

    Google Scholar 

Download references

Acknowledgments

Special thanks to Anton Chakhmouradian for the thorough reviews of the manuscript, and to Maarten A.T.M. Broekmans for the editorial revision and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawtar Lakroud.

Additional information

Editorial handling: A. R. Chakhmouradian

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Major and trace element compositions of host nephelinites from Aguelmane Sidi Ali. Major oxides in wt% and trace elements in ppm. LLD for major and trace elements is in wt% and μg/g respectively (DOCX 24 kb)

ESM 2

Trace element patterns of host nephelinites form Aguelmane Sidi Ali. Chondrite-normalized Rare Earth elements (REE) patterns. (b) Primitive mantle-normalized elements spectra. Normalization values are from Sun and McDonough (1989). The grey fields are from Bosch et al. 2014 (DOCX 25022 kb)

ESM 3

Compositions (wt%) of rock forming and accessory minerals from Aguelmane Sidi Ali (DOCX 74 kb)

ESM 4

(XLSX 227 kb)

ESM 5

(PNG 684 kb)

High Resolution (EPS 1233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakroud, K., Remmal, T., Makhoukhi, S. et al. Ba- and Ti-rich oxymica from nephelinites in the Middle Atlas Volcanic Province, northern Morocco. Miner Petrol 114, 119–128 (2020). https://doi.org/10.1007/s00710-019-00691-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-019-00691-x

Keywords

Navigation