Skip to main content
Log in

Fluid-driven destabilization of REE-bearing accessory minerals in the granitic orthogneisses of North Veporic basement (Western Carpathians, Slovakia)

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A variety of rare earth elements-bearing (REE) accessory mineral breakdowns were identified in granitic orthogneisses from the pre-Alpine basement in the Veporic Unit, Central Western Carpathians, Slovakia. The Ordovician granitic rocks were subjected to Variscan metamorphic-anatectic overprint in amphibolite facies. Chemical U-Th-Pb dating of monazite-(Ce) and xenotime-(Y) reveal their primary magmatic Lower to Middle Ordovician age (monazite: 472 ± 4 to 468 ± 6 Ma and xenotime: 471 ± 13 Ma) and/or metamorphic-anatectic Variscan (Carboniferous, Visean) age (monazite: 345 ± 3 Ma). Younger fluid-rock interactions caused breakdown of primary magmatic and/or metamorphic-anatectic monazite-(Ce), xenotime-(Y), fluorapatite and allanite-(Ce). Fluid-induced breakdown of xenotime-(Y) produced numerous tiny uraninite inclusions within the altered xenotime-(Y) domains. The monazite-(Ce) breakdown produced secondary egg-shaped coronal structures of different stages with well-developed concentric mineral zones. Secondary sulphatian monazite-(Ce) (up to 0.15 apfu S) occasionally formed along fluorapatite fissures. Localized fluorapatite and monazite-(Ce) recrystallization resulted in a very fine-grained, non-stoichiometric mixture of REE-Y-Fe-Th-Ca-P-Si phases. Finally, allanite-(Ce) decomposed to secondary REE carbonate minerals (members of the bastnäsite and synchysite groups) and calcite in some places. Although the xenotime alteration and formation of uraninite inclusions is believed to be the result of dissolution-reprecipitation between early magmatic xenotime and late-magmatic granitic fluids, the monazite, apatite and allanite breakdowns were driven by metamorphic hydrothermal fluids. While earlier impact of post-magmatic fluids originated probably from Permian acidic volcanic and microgranitic veins crosscutting the orthogneisses, another fluid-rock interaction event most likely occurred during Late Cretaceous metamorphism in the Veporic basement and covering rocks. This stage indicates carbon-bearing fluids precipitating the carbonate minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amli R, Griffin W (1975) Microprobe analysis of REE minerals using empirical correction factors. Am Mineral 60:599–606

    Google Scholar 

  • Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Gieré R, Heuss-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006) Recommended nomenclature of epidote-group minerals. Eur J Mineral 18:551–567

    Article  Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552

    Article  Google Scholar 

  • Berger A, Gnos E, Janots E, Fernandez A, Giese J (2008) Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chem Geol 254:238–248

    Article  Google Scholar 

  • Bezák V (1994) Proposal of the new division of the West Carpathian crystalline based on the Hercynian tectonic building reconstruction. Min Slov 26:1–6 (in Slovak with English summary)

    Google Scholar 

  • Biely A, Bezák V, Elečko M, Kaličiak M, Konečný V, Lexa J, Mello J, Nemčok J, Potfaj M, Rakús M, Vass D, Vozár J, Vozárová A (1996) Geological map of Slovakia 1:500000. State Geological Institute of Dionýz Štúr, Bratislava

    Google Scholar 

  • Broska I, Siman P (1998) The breakdown of monazite in the West-Carpathian Veporic orthogneisses and Tatric granites. Geol Carpath 49:161–167

    Google Scholar 

  • Broska I, Williams CT, Janák M, Nagy G (2005) Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos 82:71–83

    Article  Google Scholar 

  • Budzyń B, Hetherington CJ, Williams ML, Jercinovic MJ, Michalik M (2010) Fluid mineral interactions and constraints on monazite alteration during metamorphism. Mineral Mag 74:659–681

    Article  Google Scholar 

  • Budzyń B, Harlov DE, Williams ML, Jercinovic MJ (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. Am Mineral 96:1547–1567

    Article  Google Scholar 

  • Chakhmouradian AR, Mitchell RH (1999) Niobian ilmenite, hydroxylapatite and sulfatian monazite: alternative hosts for incompatible elements in calcite kimberlite from Internatsionaľnaya, Yakutia. Can Mineral 37:1177–1189

    Google Scholar 

  • Finger F, Broska I, Roberts M, Schermaier A (1998) Replacement of primary monazite by apatite–allanite–epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. Am Mineral 85:248–258

    Article  Google Scholar 

  • Finger F, Krenn E, Riegler G, Romano S, Zulauf G (2002) Resolving Cambrian, Carboniferous, Permian and Alpine monazite generations in the polymetamorphic basement of eastern Crete (Greece) by means of the electron microprobe. Terra Nov. 14:233–240

  • Förster H-J (1998a) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part I: The monazite-(Ce)-brabantite solid solution series. Am Mineral 83:259–272

    Article  Google Scholar 

  • Förster H-J (1998b) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part II: Xenotime. Am Mineral 83:1302–1315

    Article  Google Scholar 

  • Förster H-J (2000) Cerite-(Ce) and thorian synchysite-(Ce) from the Niederbobritzsch granite, Erzgebirge, Germany: implications for the differential mobility of the LREE and Th during alteration. Can Mineral 38:67–79

    Article  Google Scholar 

  • Förster H-J (2006) Composition and origin of intermediate solid solutions in the system thorite–xenotime–zircon–coffinite. Lithos 88:35–55

    Article  Google Scholar 

  • Franz G, Andhres D, Rhede G (1996) Crystal chemistry of monazite and xenotime from Saxothuringian-Moldanubian metapelites, NE Bavaria, Germany. Eur J Mineral 8:1097–1118

    Article  Google Scholar 

  • Fulignati P, Gioncada A, Sbrana A (1999) Rare-earth element (REE) behaviour in the alteration facies of the active magmatic – hydrothermal system of Vulcano (Aeolian Islands, Italy). J Volcanol Geoth Res 88:325–342

    Article  Google Scholar 

  • Gratz R, Heinrich W (1997) Monazite-xenotime thermobarometry: experimental calibration of the miscibility gap in the binary system CePO4-YPO4. Am Mineral 82:772–780

    Article  Google Scholar 

  • Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution– reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petr 150:268–86

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib Mineral Petr 162:329–348

    Article  Google Scholar 

  • Heinrich W, Andrehs G, Franz G (1997) Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. J Metamorph Geol 15:3–16

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am Mineral 93:806–820

    Article  Google Scholar 

  • Hsu LC (1992) Synthesis and stability of bastnaesites in a part of the system (Ce, La)-F-H-C-O. Mineral Petrol 47:87–102

    Article  Google Scholar 

  • Janák M, Plašienka D, Frey M, Cosca M, Schmidt ST, Lupták B, Méres Š (2001) Cretaceous evolution of a metamorphic core complex, the Veporic Unit, Western Carpathians (Slovakia): P-T conditions and in situ 40Ar/39Ar UV laser probe dating of metapelites. J Metamorph Geol 19:197–216

    Article  Google Scholar 

  • Janots E, Engi M, Berger A, Allaz J, Schwartz J-O, Spandler C (2008) Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610 °C. J Metamorph Geol 26:509–526

    Article  Google Scholar 

  • Jeřábek P, Janák M, Faryad SW, Finger F, Konečný P (2008) Polymetamorphic evolution of pelitic schists and evidence for Permian low-pressure metamorphism in the Vepor Unit, West Carpathians. J Metamorph Geol 26:465–485

    Article  Google Scholar 

  • Johan Z, Johan V (2005) Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic: indicators of petrogenetic evolution. Mineral Petrol 83:113–150

    Article  Google Scholar 

  • Kohn MJ, Malloy MA (2004) Formation of monazite via prograde metamorphic reactions among common silicates: implications for age determinations. Geochim Cosmochim Ac 68:101–113

    Article  Google Scholar 

  • Kohút M, Recio C (2002) Sulphur isotopes of selected Hercynian granitic and surrounding rocks from the Western Carpathians (Slovakia). Geol Carpath 53:3–13

    Google Scholar 

  • Kohút M, Nabelek PI, Recio C (2001) Stable isotopes. In: Petrík I, Kohút M, Broska I (eds) Granitic plutonism of the Western Carpathians. Veda, Bratislava, pp 33–35

    Google Scholar 

  • Kohút M, Poller U, Nabelek P, Todt W, Gaab A (2003) Granitic rocks of the Branisko Mts. – partial melting products of the Patria amphibolite – gneissic (greenstone) complex. J Czech Geol Soc 48:78–79

    Google Scholar 

  • Kotov AB, Miko O, Putiš M, Korikovsky SP, Salnikova EB, Kovach VP, Yakovleva S (1996) U-Pb dating of zircons of postorogenic acid metavolcanics and metasubvolcanics: a record of Permian-Triassic taphrogeny of the West-Carpathians basement. Geol Carpath 47:73–79

    Google Scholar 

  • Krenn E, Finger F (2007) Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece: microprobe data and geochronological implications. Lithos 95:130–147

    Article  Google Scholar 

  • Krist E, Korikovsky SP, Putiš M, Janák M, Faryad SW (1992) Geology and petrology of metamorphic rocks of the Western Carpathian crystalline complexes. Comenius University Press, Bratislava

    Google Scholar 

  • Kukharenko AA, Orlova MP, Bulakh AG, Bagdasarov EA, Rimskaya-Korsakova OM, Nefedov EI, Iľinskii GA, Sergeev AS, Abakumova NB (1965) The Caledonian complex of ultrabasic alkaline rocks and carbonatites of the Kola Peninsula and Northern Karelia. Nedra Press, Leningrad, Russia (in Russian)

    Google Scholar 

  • Lo Pò D, Braga R, Massonne H-J, Molli G, Montanini A, Theye T (2016) Fluid-induced breakdown of monazite in medium-grade metasedimentary rocks of the Pontremoli basement (Northern Apennines, Italy). J Metamorph Geol 34:63–84

    Article  Google Scholar 

  • Lupták B, Janák M, Plašienka D, Schmidt ST, Frey M (2000) Chloritoid-kyanite schists from the Veporic unit, Western Carpathians, Slovakia: implications for Alpine (Cretaceous) metamorphism. Schweiz Miner Petrog 80:213–223

    Google Scholar 

  • Majka J, Budzyń B (2006) Monazite breakdown in metapelites from Wedel Jarlsberg land, Svalbard - preliminary report. Mineral Pol 37:61–69

    Google Scholar 

  • Michálek M, Putiš M (2009) P-T-d evolution of eclogitic metabasites and Neoproterozoic orthogneiss in the North-Veporic basement of the central Western Carpathians. Mineral Slov 41:1–22

    Google Scholar 

  • Middleton AW, Förster H-J, Uysal T, Golding SD, Rhede D (2013) Accessory phases from the Soultz monzogranite, Soultz-sous-Forêts, France: implications for titanite destabilisation and differential REE, Y and Th mobility in hydrothermal systems. Chem Geol 335:105–117

    Article  Google Scholar 

  • Mogilevsky P (2007) On the miscibility gap in monazite–xenotime systems. Phys Chem Miner 34:201–214

    Article  Google Scholar 

  • Montel JP, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

    Article  Google Scholar 

  • Ondrejka M, Uher P, Pršek J, Ozdín D (2007) Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec–Rejkovo rhyolite, Western Carpathians, Slovakia: composition and substitutions in the (REE, Y)XO4 system (X = P, As, Si, Nb, S). Lithos 95:116–129

    Article  Google Scholar 

  • Ondrejka M, Uher P, Putiš M, Broska I, Bačík P, Konečný P, Schmiedt I (2012) Two stage breakdown of monazite by post-magmatic and metamorphic fluids: an example from the Veporic orthogneiss, Western Carpathians, Slovakia. Lithos 142–143:245–255

    Article  Google Scholar 

  • Ondrejka M, Broska I, Uher P, Kohút M, Putiš M, Konečný P (2013) Accommodation of S and As by primary magmatic monazite in Western Carpathian granitic rocks: the role of minor element substitutions and redox conditions of parental melt. Critical Metals, CM2013 Second International Workshop, Mongolia, July 3–9, Program, Abstracts & Fieldtrip Guidebook, p 18

  • Overstreet WC (1967) The geologic occurrence of monazite. Geol Surv Prof Pap 530:327

    Google Scholar 

  • Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ (2010) Nomenclature of the apatite supergroup minerals. Eur J Mineral 22:163–179

    Article  Google Scholar 

  • Petrík I, Broska I, Lipka J, Siman P (1995) Granitoid allanite-(Ce): substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia). Geol Carpath 46:79–94

    Google Scholar 

  • Petrík I, Konečný P, Kováčik M, Holický I (2006) Electron microprobe dating of monazite from the Nízke Tatry Mountains orthogneisses (Western Carpathians, Slovakia). Geol Carpath 57:227–242

    Google Scholar 

  • Plašienka D, Grecula P, Putiš M, Kováč M, Hovorka D (1997) Evolution and structure of the Western Carpathians: an overview. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Mineral Slov Monograph, Bratislava, pp 1–24

    Google Scholar 

  • Poitrasson F, Chenery S, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: implications for U–Th–Pb geochronology and nuclear ceramics. Geochim Cosmochim Ac 64:3283–3297

    Article  Google Scholar 

  • Poitrasson F, Hanchar JM, Schaltegger U (2002) The current state and future of accessory mineral research. Chem Geol 191:3–24

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1985) PAP” φ(ρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam analysis. San Francisco Press, San Francisco, California, USA, pp 104–106

    Google Scholar 

  • Pršek J, Ondrejka M, Bačík P, Budzyń B, Uher P (2010) Metamorphic-hydrothermal REE minerals in the Bacúch magnetite deposit, Western Carpathians, Slovakia: (Sr, S)-rich Monazite-(Ce) and Nd-dominant Hingganite. Can Mineral 48:81–94

    Article  Google Scholar 

  • Putiš M (1992) Variscan and Alpidic nappe structures of the Western Carpathian crystalline basement. Geol Carpath 43:369–380

    Google Scholar 

  • Putiš M (1994) South Tatric-Veporic basement geology: Variscan nappe structures; Alpine thick-skinned and extensional tectonics in the Western Carpathians (Eastern Low Tatra Mountains, Northwestern Slovak Ore Mountains). Mitt Österr Geol Ges 86:83–99

    Google Scholar 

  • Putiš M, Filová I, Korikovsky SP, Kotov AB, Madarás J (1997) Layered metaigneous complex of the Veporic basement with features of the Variscan and Alpine thrust tectonics (the Western Carpathians). In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Mineral Slov Monograph, Bratislava, pp 175–196

    Google Scholar 

  • Putiš M, Kotov AB, Petrík I, Korikovsky SP, Madarás J, Salnikova EB, Yakovleva SZ, Berezhnaya NG, Plotkina YV, Kovach VP, Lupták B, Majdán M (2003) Early- vs. Late orogenic granitoids relationships in the Variscan basement of the Western Carpathians. Geol Carpath 54:163–174

    Google Scholar 

  • Putiš M, Sergeev S, Ondrejka M, Larionov A, Siman P, Spišiak J, Uher P, Paderin I (2008) Cambrian-Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record from the Gondwana active margin setting. Geol Carpath 59:3–18

    Google Scholar 

  • Putiš M, Ivan P, Kohút M, Spišiak J, Siman P, Radvanec M, Uher P, Sergeev S, Larionov A, Méres Š, Demko R, Ondrejka M (2009a) Metaigneous rocks of the West-Carpathian basement, Slovakia: indicators of Early Paleozoic extension and shortening events. Bull Soc Geol France 180:461–471

    Article  Google Scholar 

  • Putiš M, Frank W, Plašienka D, Siman P, Sulák M, Biroň A (2009b) Progradation of the Alpidic Central Western Carpathians orogenic wedge related to two subductions: constrained by 40Ar/39Ar ages of white micas. Geodin Acta 22:31–56

    Article  Google Scholar 

  • Putiš M, Michálek M, Koller F (2011) Microtextures, P-T estimation and dating of metamorphic rocks exhumed in a Variscan shear zone, Veporic unit, Slovakia. Petros conference Proceedings. Comenius University Press, Bratislava, pp 28–32

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 6:689–708

    Article  Google Scholar 

  • Putnis A, Hinrichs R, Putnis CV, Golla-Schindler U, Collins LG (2007) Hematite in porous red-clouded feldspars: evidence of large-scale crustal fluid-rock interaction. Lithos 95:10–18

    Article  Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL, McDonough WF (2001) Monazite–xenotime garnet equilibrium in metapelites and a new monazite–garnet thermometer. J Petrol 42:2083–2107

    Article  Google Scholar 

  • Schandl ES, Gorton MP (2004) A textural and geochemical guide to the identification of hydrothermal monazite; criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Econ Geol 99:1027–1035

    Article  Google Scholar 

  • Spear FS, Pyle JM (2002) Apatite, monazite, and xenotime in metamorphic rocks. In: Kohn, MJ, Rakovan J, Hughes JM (eds) Phosphates: Geochemical, Geobiological, and Materials Importance, Rev Min Geochem, Mineral Soc Am, Washington, D.C., 48:293–335

  • Uher P, Ondrejka M, Konečný P (2009) Magmatic and post-magmatic Y-REE-Th phosphate, silicate and Nb-Ta-Y-REE oxide minerals in A-type metagranite: an example from the Turčok massif, the Western Carpathians, Slovakia. Mineral Mag 73:1009–1025

    Article  Google Scholar 

  • Uher P, Ondrejka M, Bačík P, Broska I, Konečný P (2015) Britholite, monazite, REE-carbonates and calcite: products of low-temperature alteration of allanite and apatite in A-type granite from Stupné, Western Carpathians, Slovakia, Lithos 236–237:212–225

  • Upadhyay D, Pruseth KL (2012) Fluid-induced dissolution breakdown of monazite from Tso Morari complex, NW Himalayas: evidence for immobility of trace elements. Contrib Mineral Petr 164:303–316

    Article  Google Scholar 

  • Vainshtein EE, Tugarinov AI, Turanskaya NV (1956) Regularities in the distribution of rare earths in certain minerals. Geochemistry 2:159–178

    Google Scholar 

  • Wark DA, Miller CF (1993) Accessory mineral behavior during differentiation of a granite suite: monazite, xenotime, and zircon in the Sweetwater Wash pluton, southeastern California, USA. Chem Geol 110:49–67

    Article  Google Scholar 

  • Williams ML, Jercinovic MJ, Harlov DE, Budzyń B, Hetherington CJ (2011) Resetting monazite ages during fluid-related alteration. Chem Geol 283:218–225

    Article  Google Scholar 

  • Williams-Jones AE, Wood SA (1992) A preliminary petrogenetic grid for REE fluorocarbonates and associated minerals. Geochim Cosmochim Ac 56:725–738

    Article  Google Scholar 

  • Wing BA, Ferry JM, Harrison TM (2003) Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contrib Min Petrol 145:228–250

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under contract No. APVV-0081-10 and APVV-14-0278 and VEGA Agency No. 1/0257/13 and 1/0079/15. We thank D. Ozdín, I. Holický and V. Kollárová for providing the EPMA facilities and R.J. Marshall for reviewing the English content. Finally we thank S. Vlach, J. Bazarnik, one anonymous reviewer and L. Nasdala (Editor-in-Chief) for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ondrejka.

Additional information

Editorial handling: L. Nasdala

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ondrejka, M., Putiš, M., Uher, P. et al. Fluid-driven destabilization of REE-bearing accessory minerals in the granitic orthogneisses of North Veporic basement (Western Carpathians, Slovakia). Miner Petrol 110, 561–580 (2016). https://doi.org/10.1007/s00710-016-0432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-016-0432-8

Keywords

Navigation