Skip to main content
Log in

On the miscibility gap in monazite–xenotime systems

  • Original Ppaer
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The regular solid solution model has been applied to solid solubility in the monazite–xenotime systems and is verified against the available experimental data for LaPO4–YPO4 and CePO4–YPO4 systems. The model is then used to predict the miscibility gaps in a number of other monazite–xenotime systems. The implications for prospective two-phase monazite–xenotime fiber coatings for applications in ceramic matrix composites (CMCs) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. All radii cited in this study are eight coordinated ion radii

  2. See Sect. 5 for more on Young’s modulus of monazite and xenotime orthophosphates

References

  • Aldred AT (1984) Cell volumes of APO4, AVO4, and ANbO4 compounds, where A=Sc, Y, La-Lu. Acta Cryst B40:569–574

    Article  Google Scholar 

  • Andrehs G, Heinrich W (1998) Experimental determination of REE distributions between monazite and xenotime: potential for temperature-calibrated geochronology. Chem Geol 149:83–96

    Article  Google Scholar 

  • Angel RJ, Bismayer U, Marshall WG (2001) Renormalization of the phase transition in lead phosphate, Pb3(PO4)2, by high pressure: Structure. J Phys Condensed Matter 13:5353–5364

    Article  Google Scholar 

  • Armbruster A (1976) Infrared reflection studies on the phosphates, arsenates, and vanadates of Lutetium and Yttrium. J Phys Chem Solids 37:321–327

    Article  Google Scholar 

  • Armbruster A, Thoma R, Wehrle H (1974) Measurement of the elastic constants of LuAsO4 and LuPO4 by Brillouin scattering and determination of Debye temperatures. Phys Stat Sol A 24:K71–K73

    Article  Google Scholar 

  • Ashby MF (1998) Checks and estimates for material properties I. Ranges and simple correlations. Proc R Soc Lond A 454:1301–1321

    Google Scholar 

  • Berryman JG (2005) Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries. J Mech Phys Sol 53:2141–2173

    Article  Google Scholar 

  • Blundy JD, Wood BJ (2002) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454

    Article  Google Scholar 

  • Blundy JD Wood BJ (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397

    Article  Google Scholar 

  • Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Crystal Growth 28:249–253

    Article  Google Scholar 

  • Celebi AS, Kolis JW (2002) Hydrothermal synthesis of xenotime-type gadolinium orthophosphate. J Am Ceram Soc 85:253–254

    Article  Google Scholar 

  • Davis JB, Lofvander JPA, Evans AG, Bischoff E, Emiliani ML (1993) Fiber coating concepts for brittle matrix composites. J Am Ceram Soc 76:1249–1257

    Article  Google Scholar 

  • Davis JB, Marshall DB, Housley RM, Morgan PED (1998) Machinable ceramics containing rare-earth phosphates. J Am Ceram Soc 81:2169–2175

    Article  Google Scholar 

  • Ewing RC, Weber WJ, Clinard FW Jr (1995) Radiation effects in nuclear waste forms for high-level radioactive waste. Prog Nuclear Energy 29:63–127

    Article  Google Scholar 

  • Fine ME, Brown LD, Marcus HL (1984) Elastic constants versus melting temperature in metals. Scripta Metal 18:951–956

    Article  Google Scholar 

  • Gaskell DR (1995a) Introduction to metallurgical thermodynamics, 3rd edn. Taylor& Francis, Washington, p 258

  • Gaskell DR (1995b) Introduction to metallurgical thermodynamics, 3rd edn. Taylor & Francis, Washington, p 279

  • Gratz R, Heinrich W (1997) Monazite–xenotime thermobarometry: experimental calibration of the miscibility gap in the binary system CePO4–YPO4. Am Mineral 82:772–780

    Google Scholar 

  • Gratz R, Heinrich W (1998) Monazite–xenotime thermometry. III. Experimental calibration of the partitioning of gadolinium between monazite and xenotime. Eur J Mineral 10:579–588

    Google Scholar 

  • Haines J, Chateau C, Le′ger JM, Bogicevic C, Hull S, Klug DD, Tse JS (2003) Collapsing cristobalitelike structures in silica analogues at high pressure. Phys Rev Lett 91:015503/1-4

    Google Scholar 

  • Hayhurst T, Shalimoff G, Edelstein N, Boatner LA, Abraham MM (1981) Optical spectra and Zeeman effect for Er3+ in LuPO4 and HfSiO4. J Chem Phys 74:5449–5452

    Article  Google Scholar 

  • Heinrich W, Andrehs G, Franz G (1997) Monazite–xenotime miscibility gap thermometry: I. An empirical calibration. J Metamorphic Geol 15:3–17

    Article  Google Scholar 

  • Hikichi Y, Ota T, Daimon K, Keiji H, Hattori T, Mizuno M (1998) Thermal, mechanical, and chemical properties of sintered xenotime-type RPO4 (R = Y, Er, Yb, or Lu). J Am Ceram Soc 81:2216–2218

    Article  Google Scholar 

  • Hikichi Y Nomura T (1987) Melting temperatures of monazite and xenotime. J Am Ceram Soc 70:C252–C253

    Google Scholar 

  • Keller KA, Mah T, Parthasarathy TA, Boakye EE, Mogilevsky P, Cinibulk MK (2003) Effectiveness of monazite coatings in oxide/oxide composites in extending life after long-term exposure at high-temperature. J Am Ceram Soc 86:325–332

    Article  Google Scholar 

  • Kerans RJ, Hay RS, Parthasarathy TA, Cinibulk MK (2002) Interface design for oxidation-resistant ceramic composites. J Am Ceram Soc 85:2599–2632

    Article  Google Scholar 

  • Kolitsch U, Holtstam D (2004) Crystal chemistry of REEXO4 compounds (X = P, As, V). II. Review of REEXO4 compounds and their stability fields. Eur. J Mineral 16:117–126

    Article  Google Scholar 

  • Kuo DH, Kriven WM (1995) Characterization of yttrium phosphate and yttrium phosphate/yttrium aluminate laminate. J Am Ceram Soc 78:3121–3124

    Article  Google Scholar 

  • Lempicki A, Berman E, Wojtowicz AJ, Balcerzyk M, Boatner LA (1993) Cerium-doped orthophosphates: new promising scintillators. IEEE Trans Nuclear Sci 40:384–387

    Article  Google Scholar 

  • Marshall DB, Morgan PED, Houley RM, Cheung JT (1998) High-temperature stability of the Al2O3–LaPO4 system. J Am Ceram Soc 81:951–956

    Article  Google Scholar 

  • Mogilevsky P, Zaretsky EB, Parthasarathy TA, Meisenkothen F (2006a) Composition, lattice parameters, and room temperature elastic constants of natural single crystal xenotime from Novo Horizonte. Phys Chem Minerals 33:691–698

    Article  Google Scholar 

  • Mogilevsky P, Boakye EE, Hay RS (2006b) Solid solubility and thermal expansion in LaPO4−YPO4 system. J Am Ceram Soc (submitted)

  • Morgan PED, Marshall DB (1993) Functional interfaces for oxide/oxide composites. Mat Sci Eng A162:15–25

    Article  Google Scholar 

  • Morgan PED, Marshall DB (1995b) Ceramic composites of monazite and alumina. J Am Ceram Soc 78:1553–1563

    Article  Google Scholar 

  • Morgan PED, Marshall DB, Housley RM (1995a) High temperature stability of monazite–alumina composites. Mat Sci Eng A195:215–222

    Article  Google Scholar 

  • Mullica DF, Sappenfield EL, Boatner LA (1990) A structural investigation of several mixed lanthanide orthophosphates. Inorg Chim Acta 174:155–159

    Article  Google Scholar 

  • Mullica DF, Sappenfield EL, Boatner LA (1992) Single-crystal analysis of mixed (Ln/TbPO4) orthophosphates. J Solid State Chem 99:313–318

    Article  Google Scholar 

  • Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime structures. Am Mineral 80:21–26

    Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL, McDonough WFM (2001) Monazite–xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Wirth R, Heinrich W, Montel JM (2002) Experimental determination of the Th partitioning between monazite and xenotime using analytical electron microscopy and X-ray diffraction Rietveld analysis. Eur J Mineral 14:869–878

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides. Acta Crystallogr A32:751–767

    Article  Google Scholar 

  • Skinner DJ, Zedalis M (1988) Elastic modulus versus melting temperature in aluminum based intermetallics. Scripta Metal 22:1783–1785

    Article  Google Scholar 

  • Subbarao EC, Agrawal DK, McKinstry HA, Sallese CW, Roy R (1990) Thermal expansion of compounds of zircon structure. J Am Ceram Soc 73:1246–1252

    Article  Google Scholar 

  • Ushakov SV, Helean KB, Navrotsky A, Boatner LA (2001) Thermochemistry of rare-earth orthophosphates. J Mater Res 16:2623–2633

    Google Scholar 

  • Van Emden B, Thornber MR, Graham J, Lincoln FJ (1996) Solid solution behaviour of synthetic monazite and xenotime from structure refinement of powder data. In: Advances in X-ray Analysis—the proceedings of the Denver X-ray Conferences, pp 2-15 (available on-line at http://www.icdd.com/resources/axa/vol40/V40_404.pdf)

  • Vance ER, Carter ML, Begg BD, Day RA, Leung SHF (2000) Solid solubilities of Pu, U, Hf, and Gd in candidate ceramic phases for actinide waste immobilization. Materials research society symposium–proceedings, vol 608, pp 431–436

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181

    Article  Google Scholar 

  • Wood BJ, Fraser DG (1978) Elementary thermodynamics for geologists. Oxford University Press, Oxford, pp 128–134

Download references

Acknowledgments

This work was supported by the Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, under Contract No. F33615-01-C-5214. The author would like to thank Kristen Keller (UES Inc.) and Dr. Randall Hay (Air Force Research Laboratory) for critically reading the manuscript and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mogilevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogilevsky, P. On the miscibility gap in monazite–xenotime systems. Phys Chem Minerals 34, 201–214 (2007). https://doi.org/10.1007/s00269-006-0139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-006-0139-1

Keywords

Navigation