Skip to main content

Advertisement

Log in

Strontium isotope systematics of scheelite and apatite from the Felbertal tungsten deposit, Austria – results of in-situ LA-MC-ICP-MS analysis

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The in-situ Sr isotopic systematics of scheelite and apatite from the Felbertal W deposit and a few regional Variscan orthogneisses (“Zentralgneise”) have been determined by LA-MC-ICP-MS. The 87Sr/86Sr ratios of scheelite and apatite from the deposit are highly radiogenic and remarkably scattering. In the early magmatic-hydrothermal scheelite generations (Scheelite 1 and 2) the 87Sr/86Sr ratios range from 0.72078 to 0.76417 and from 0.70724 to 0.76832, respectively. Metamorphic Scheelite 3, formed by recrystallisation and local mobilisation of older scheelite, is characterised by even higher 87Sr/86Sr values between 0.74331 and 0.80689. Statistics allows discriminating the three scheelite generations although there is considerable overlap between Scheelite 1 and 2; they could be mixtures of the same isotopic reservoirs. The heterogeneous and scattering 87Sr/86Sr ratios of the two primary scheelite generations suggest modification of the Sr isotope system due to fluid-rock interaction and isotopic disequilibrium. Incongruent release of 87Sr from micas in the Early Palaeozoic host rocks of the Habach Complex contributed to the solute budget of the hydrothermal fluids and may explain the radiogenic Sr isotope signature of scheelite. Spatially resolved analyses revealed isotopic disequilibrium even on a sub-mm scale within zoned Scheelite 2 crystals indicating scheelite growth in an isotopic dynamical hydrothermal system. Zoned apatite from the W mineralised Early Carboniferous K1-K3 orthogneiss in the western ore field yielded 87Sr/86Sr of 0.72044–0.74514 for the cores and 0.74535–0.77937 for the rims. Values of magmatic apatite cores from the K1-K3 orthogneiss are comparable to those of primary Scheelite 1; they are too radiogenic to be magmatic. The Sr isotopic composition of apatite cores was therefore equally modified during the hydrothermal mineralisation processes, therefore supporting the single-stage genetic model in which W mineralisation is associated with the intrusion of the K1-K3 metagranitoid at Felbertal. The subsequent regional metamorphic overprint of the deposit caused redistribution of 87Sr as a consequence of metamorphic reactions involving Rb and Sr-bearing minerals. Metamorphic Scheelite 3 and apatite rims (e.g., in the K1-K3 orthogneiss) generally became more radiogenic during this process. However, local recrystallisation of primary scheelite under closed conditions (without addition of 87Sr by the metamorphic fluid) is also documented. The latter process resulted in a homogenisation of the isotope composition of Scheelite 3. Further increase in 87Sr/86Sr ratios in Scheelite 3 and apatite rims is attributed to Late Alpine (?) metamorphic recrystallisation and redistribution of 87Sr by metamorphic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bau M, Romer R, Lüders V, Dulski P (2003) Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine Orefield, England. Mineral Deposita 38:992–1008

    Article  Google Scholar 

  • Bell K, Anglin CD, Franklin JM (1989) Sm-Nd and Rb-Sr isotope systematics of scheelites: possible implications for the age and genesis of vein-hosted gold deposits. Geology 17:500–504

    Article  Google Scholar 

  • Bizzarro M, Simonetti A, Stevenson R, Kurszlaukis S (2003) In situ 87Sr/86Sr investigation of igneous apatites and carbonates using laser-ablation MC-ICP-MS. Geochim Cosmochim Acta 67:289–302

    Article  Google Scholar 

  • Briegleb D (1987) Geologische Verhältnisse im Bereich der Scheelitlagerstätte im Felbertal, Pinzgau (Land Salzburg). Uni Aktuell Salzburg 10:10–11

    Google Scholar 

  • Briegleb D (1991) Die Scheelitlagerstätte im Felbertal bei Mittersill (Land Salzburg). Ber Dt Min Ges 2:48–50

    Google Scholar 

  • Brugger J, Lahaye Y, Costa S, Lambert D, Bateman R (2000) Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia). Contrib Mineral Petrol 139:251–264

    Article  Google Scholar 

  • Brugger J, Maas R, Lahaye Y, McRae C, Ghaderi M, Costa S, Lambert D, Bateman R, Prince K (2002) Origins of Nd–Sr–Pb isotopic variations in single scheelite grains from Archaean gold deposits, Western Australia. Chem Geol 182:203–225

  • Creaser RA, Gray CM (1992) Preserved initial 87Sr/86Sr in apatite from altered felsic igneous rocks: a case study from the middle Proterozoic of South Australia. Geochim Cosmochim Acta 56:2789–2795

    Article  Google Scholar 

  • Darbyshire DPF, Pitfield PEJ, Campbell SDG (1996) Late Archean and Early Proterozoic gold-tungsten mineralization in the Zimbabwe Archean craton: Rb-Sr and Sm-Nd isotope constraints. Geology 24:19–22

    Article  Google Scholar 

  • Dostal J, Kontak D, Chatterjee AK (2009) Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: genetic implications. Mineral Petrol 97:95–109

    Article  Google Scholar 

  • Eichhorn R, Schärer U, Höll R (1995) Age and evolution of scheelite-hosting rocks in the Felbertal deposit (Eastern Alps): U-Pb geochronology of zircon and titanite. Contrib Mineral Petrol 119:377–386

    Article  Google Scholar 

  • Eichhorn R, Höll R, Jagoutz E, Schärer U (1997) Dating scheelite stages: a strontium, neodymium, lead approach from the Felbertal tungsten deposit, Central Alps, Austria. Geochim Cosmochim Acta 61:5005–5022

    Article  Google Scholar 

  • Eichhorn R, Höll R, Loth G, Kennedy A (1999) Implications of U–Pb SHRIMP zircon data on the age and evolution of the Felbertal tungsten deposit (Tauern Window, Austria). Int J Earth Sci 88:496–512

    Article  Google Scholar 

  • Eichhorn R, Loth G, Höll R, Finger F, Schermaier A, Kennedy A (2000) Multistage Variscan magmatism in the central Tauern Window (Austria) unveiled by U/Pb SHRIMP zircon data. Contrib Mineral Petrol 139:418–435

    Article  Google Scholar 

  • Eichhorn R, Loth G, Kennedy A (2001) Unravelling the pre-Variscan evolution of the Habach terrane (Tauern Window, Austria) by U-Pb SHRIMP zircon data. Contrib Mineral Petrol 142:147–162

    Article  Google Scholar 

  • Farmer GL, DePaolo DJ (1987) Nd and Sr isotope study of hydrothermally altered granite at San Manuel, Arizona; implications for element migration paths during the formation of porphyry copper ore deposits. Econ Geol 82:1142–1151

    Article  Google Scholar 

  • Finger F, Kraiger H, Steyrer HP (1985) Zur Geochemie des K1-Gneises der Scheelitlagerstätte Felbertal (Pinzgau/Salzburg) - ein Vorbericht. Der Karinthin 92:225–235

    Google Scholar 

  • Franz C, Grundmann G, Ackermand D (1986) Rock forming beryl from a regional metamorphic terrain (Tauern Window, Austria): parageneses and crystal chemistry. TMPM Tschermaks Miner Petrogr Mitt 35:167–192

    Article  Google Scholar 

  • Frasl G (1958) Zur Seriengliederung der Schieferhülle in den mittleren Hohen Tauern. Jb Geol B-A 101:323–472

    Google Scholar 

  • Ghaderi M, Palin M, Campbell IH, Sylvester PJ (1999) Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia. Econ Geol 94:423–438

    Article  Google Scholar 

  • Gilg HA, Höll R, Kupferschmied MP, Reitz E, Stärk H (1989) Die Basisschieferfolge in der Habachformation im Felber- und Amertal (Tauernfenster, Salzburg): Gesteinsinhalt, Geochemie, Fossilführung und genetische Implikationen. Mitt Österr Geol Ges 81:65–91

    Google Scholar 

  • Glodny J, Kühn A, Austrheim H (2008) Diffusion versus recrystallization processes in Rb–Sr geochronology: isotopic relics in eclogite facies rocks, Western Gneiss Region, Norway. Geochim Cosmochim Acta 72:506–525

    Article  Google Scholar 

  • Glodny J, Grauert B (2009) Evolution of a hydrothermal fluid-rock interaction system as recorded by Sr isotopes: a case study from the Schwarzwald, SW Germany. Mineral Petrol 95:163–178

    Article  Google Scholar 

  • Grundmann G (1989) Metamorphic evolution of the Habach Formation a review. Mitt Österr Geol Ges 81:133–149

    Google Scholar 

  • Höck V (1993) The Habach-Formation and the Zentralgneis - a key in understanding the palaeozoic evolution of the Tauern Window (Eastern Alps). In: Raumer JF, Neubauer F (eds) Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp. 361–374

    Chapter  Google Scholar 

  • Höll R (1975) Die Scheelitlagerstätte Felbertal und der Vergleich mit anderen Scheelitvorkommen in den Ostalpen. Verlag der Bayerischen Akademie der Wissenschaften, München

    Google Scholar 

  • Höll R (1977) Early Palaeozoic ore deposits of the Sb-W-Hg formation. In: Klemm DD, Schneider HJ (eds) Time- and strata-bound ore deposits. Springer, Berlin Heidelberg New York, pp. 169–198

    Chapter  Google Scholar 

  • Höll R (1979) Time- and stratabound Early Paleozoic scheelite, stibnite and cinnabar deposits in the Eastern Alps. Verh Geol B-A 3:369–387

    Google Scholar 

  • Höll R, Eichhorn R (2000) Tungsten mineralization and metamorphic remobilization in the Felbertal scheelite deposit, Central Alps, Austria. In: Spry PG, Marshall B, Vokes FM (eds) metamorphosed and metamorphogenic ore deposits. Rev Econ Geol 11:233–264

    Google Scholar 

  • Horstwood MSA, Evans JA, Montgomery J (2008) Determination of Sr isotopes in calcium phosphates using laser ablation inductively coupled plasma mass spectrometry and their application to archaeological tooth enamel. Geochim Cosmochim Acta 72:5659–5674

    Article  Google Scholar 

  • Kebede T, Klötzli U, Kosler J, Skiöld T (2005) Understanding the pre-Variscan and Variscan basement components of the central Tauern Window, Eastern Alps (Austria): constraints from single zircon U-Pb geochronology. Int J Earth Sci 94:336–353

    Article  Google Scholar 

  • Kempe U, Belyatsky B, Krymsky R, Kremenetsky A, Ivanov P (2001) Sm–Nd and Sr isotope systematics of scheelite from the giant Au(−W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization. Mineral Deposita 36:379–392

    Article  Google Scholar 

  • Koller F, Richter W (1984) Die Metarodingite der Habachformation, Hohe Tauern (Österreich). TMPM Tschermaks Miner Petrogr Mitt 33:49–66

    Article  Google Scholar 

  • Kozlik M, Raith JG (2014) Chemical characteristics of the K1-K3 metagranitoid in the Felbertal scheelite deposit (Austria). Mitt Österr Mineral Ges 160:37–42

    Google Scholar 

  • Kozlik M, Raith JG, Gerdes A (2015) U-Pb, Lu-Hf and trace element characteristics of magmatic and hydrothermal zircon from the Felbertal scheelite deposit (Austria): new constraints on timing and source of W-mineralization. Chem Geol (in press)

  • Lüders V, Romer R, Gilg HA, Bodnar RJ, Pettke T, Misantoni D (2009) A geochemical study of the Sweet Home Mine, Colorado Mineral Belt, USA: hydrothermal fluid evolution above a hypothesized granite cupola. Mineral Deposita 44:415–434

    Article  Google Scholar 

  • Mueller AG, de Laeter JR, Groves DI (1991) Strontium isotope systematics of hydrothermal minerals from epigenetic Archean gold deposits in the Yilgarn block, Western Australia. Econ Geol 86:780–809

    Article  Google Scholar 

  • Neinavaie MH, Ghasemi B, Fuchs HW (1983) Die Erzvorkommen Osttirols. Veröffentlichungen des Tiroler Landesmuseums Ferdinandeum 63:69–113

    Google Scholar 

  • Peng B, Frei R (2004) Nd-Sr-Pb isotopic constraints on metal and fluid sources in W-Sb-Au mineralization at Woxi and Liaojiaping (western Hunan, China). Mineral Deposita 39:313–327

    Article  Google Scholar 

  • Pestal G (1983) Beitrag zur Kenntnis der Geologie im mittleren Hohen Tauern Bereich des Amer- und Felbertals. University of Vienna, Dissertation

    Google Scholar 

  • Raimbault L, Baumer A, Dubru M, Benkerrou C, Croze V, Zahm A (1993) REE fractionation between scheelite and apatite in hydrothermal conditions. Am Mineral 78:1275–1285

    Google Scholar 

  • Raith JG, Stein HJ (2006) Variscan ore formation and metamorphism at the Felbertal scheelite deposit (Austria): constraining tungsten mineralisation from Re–Os dating of molybdenite. Contrib Mineral Petrol 152:505–521

    Article  Google Scholar 

  • Raith JG, Schmidt S (2010) Tungsten deposit Felbertal, Salzburg, Austria. Acta Mineralogica-Petrographica, Field Guide Series 3:1–24

    Google Scholar 

  • Raith JG, Gerdes A, Cornell DH (2011) In situ U-Pb dating of scheelite: constraints on the age and genesis of the Felbertal tungsten deposit. Mineral Mag 75:1690

    Google Scholar 

  • Rankenburg K (2002) Megacrysts in volcanic rocks of the Cameroon volcanic line – constraints of magma genesis and contamination. University of Frankfurt, Dissertation

    Google Scholar 

  • Romer RL (1996) U-Pb systematics of stilbite-bearing low-temperature mineral assemblages from the Malmberget iron ore, northern Sweden. Geochim Cosmochim Acta 60:1951–1961

    Article  Google Scholar 

  • Sallet R, Moritz R, Fontignie D (2000) Fluorite 87Sr/86Sr and REE constraints on fluid-melt relations, crystallization time span and bulk D Sr of evolved high-silica granites. Tabuleiro granites, Santa Catarina, Brazil. Chem Geol 164:81–92

    Article  Google Scholar 

  • Schenk P (1990) Mikrothermometrische gefügekundliche und geochemische Untersuchungen zur Genese der Scheelitlagerstätte Felbertal/Ostalpen. University of Munich, Dissertation

    Google Scholar 

  • Song G, Qin K, Li G, Evans NJ, Chen L (2014) Scheelite elemental and isotopic signatures: implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui province, eastern China. Am Mineral 99:303–317

    Article  Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci Lett 196:17–33

    Article  Google Scholar 

  • Topa D, Makovicky E, Paar WH (2002) Composition ranges and exsolution pairs for the members of the bismuthinite-aikinite series from Felbertal, Austria. Can Mineral 40:849–869

    Article  Google Scholar 

  • Tornos F, Galindo C, Crespo JL, Spiro BF (2008) Geochemistry and origin of calcic tungsten-bearing skarns, Los Santos, Central Iberian Zone, Spain. Can Mineral 46:87–109

    Article  Google Scholar 

  • Tsuboi M (2005) The use of apatite as a record of initial 87Sr/86Sr ratios and indicator of magma processes in the Inagawa pluton, Ryoke belt, Japan. Chem Geol 221:157–169

    Article  Google Scholar 

  • Voicu G, Bardoux M, Stevenson R, Jébrak M (2000) Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai, Guiana Shield: implications for ore fluid source and flow path during the formation of orogenic gold deposits. Mineral Deposita 35:302–314

    Article  Google Scholar 

  • von Quadt A (1985) Geochronologische, geochemische und isotopengeochemische Untersuchungen an Gesteinen der Habach-Formation, der Scheelitlagerstätte und des angrenzenden Altkristallins im Felbertal (Land Salzburg). Dissertation, Eidgenössische Technische Hochschule Zürich

    Google Scholar 

  • von Quadt A (1992) U-Pb zircon and Sm-Nd geochronology of mafic and ultramafic rocks from the central part of the Tauern Window (eastern Alps). Contrib Mineral Petrol 110:57–67

    Article  Google Scholar 

  • Woodhead JD, Hergt JM (2001) Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614. Geostand Newslett 25:261–266

    Article  Google Scholar 

  • Zuddas P, Seimbille F, Michard G (1995) Granite-fluid interaction at near-equilibrium conditions: experimental and theoretical constraints from Sr contents and isotopic ratios. Chem Geol 121:145–154

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Linda Marko for assistance with sample separation, preparation of mounts and help with isotope analyses. Helmut Mühlhans is thanked for preparation of polished (thin) sections. Marie-Luise Pecher and Steffen Schmidt from Wolfram Bergbau und Hütten AG (WBH AG) are thanked for their support during fieldwork and sampling. The management of WBH AG is thanked for enabling access to the Felbertal deposit and permission to publish data of this joint project. The constructive reviews by Gerhard Franz and Paul Nex have significantly contributed to improve the manuscript. Associate Editor Dirk Frei and Editor-in-Chief Lutz Nasdala are thanked for editorial handling of the manuscript. This project is financed by the Austrian Research Promotion Agency (FFG Bridge project 834149/30661) and WBH AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kozlik.

Additional information

Editorial handling: D. Frei

Electronic supplementary material

ESM 1

Complete dataset of Sr isotopic analyses on scheelite and apatite from the Felbertal W-deposit and adjacent Variscan orthogneisses. (PDF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlik, M., Gerdes, A. & Raith, J.G. Strontium isotope systematics of scheelite and apatite from the Felbertal tungsten deposit, Austria – results of in-situ LA-MC-ICP-MS analysis. Miner Petrol 110, 11–27 (2016). https://doi.org/10.1007/s00710-015-0416-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0416-0

Keywords

Navigation