Skip to main content
Log in

Age and evolution of scheelite-hosting rocks in the Felbertal deposit (Eastern Alps): U-Pb geochronology of zircon and titanite

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

U-Pb isotope analyses of zircon and titanite extracted from different rocks of the Felbertal scheelite deposit yield the following information: (1) An age of 593±22 Ma (2σ) is obtained for zircon crystallization in the scheelite-bearing matrix of an eruption breccia in the western ore field. (2) Discordant zircons from an elongated, up to 8 m thick scheelite-rich quartzite body in the eastern ore field give an upper intercept age of 544±5 Ma. This quartzite contains a laminated, fine-grained scheelite mineralization. (3) Zircons from a small granitoid intrusion of the western ore field reveal an age of 336±16 Ma, and concordant titanites document an age of 282±2 Ma for Variscan amphibolite facies metamorphism. Both events, granitoid intrusion and later metamorphism caused ore re-mobilization, including the formation of yellowish fluorescent (molybdo-) scheelite porphyroblasts. (4) For a narrow lamprop-1hyric dike in the western ore field, a concordant titanite age of 283±7 Ma is obtained. This age is identical with the titanites from the amphibolite facies metamorphic intrusion. Tiny scheelite grains were tapped by the dike from pre-existing scheelite mineralizations in the truncated host rocks. (5) Alpine metamorphism at 31±4 Ma did not exceed lowermost amphibolite facies conditions, and it caused scheelite re-mobilization on a minor scale only, producing bluish fluorescent porphyroblasts in quartz veinlets and veins, as well as bluish fluorescent scheelite rims around older scheelite grains. Moreover, crosscutting Alpine fissure fillings show bluish fluorescent, inclusion-free scheelite. (6) The preservation of Variscan titanites, the absence of Alpine titanite growth, and the large degree of Variscan scheelite re-mobilization demonstrate that amphibolite facies metamorphism in the Felbertal area has a Variscan age. This result clearly documents Variscan tectono-metamorphism to be the dominant event, instead of the hitherto surmised Alpine metamorphism. This multi-stage evolution of the Felbertal ore bodies corroborates the view that tungsten deposits are conditioned by several succeeding thermal events, leading to a series of stages that ultimately produce high-grade scheelite concentrations. These high-grade ores predominately occur along shear zones of different age, accompanied by the formation of large volumes of low-grade scheelite mineralizations along host rock foliations and quartz veinlets and veins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benisek A, Finger F (1993) Factors controlling the development of prism faces in granite zircons: a microprobe study. Contrib Mineral Petrol 114:441–451

    Google Scholar 

  • Briegleb D (1987) Geologische Verhältnisse im Bereich der Scheelit-lagerstätte im Felbertal, Pinzgau (Land Salzburg). Univ. Salzburg. Austria, Uni aktuell 10:10–11

    Google Scholar 

  • Cliff RA (1971) Strontium isotope distribution in a regionally metamorphosed granite from the Zentralgneis, South-East Tauernfenster, Austria. Contrib Mineral Petrol 32:274–288

    Google Scholar 

  • Eichhorn R, Höll R, Jagoutz E (1993) Crustal-mantle magma mixing modeled by Nd-, Sr-, and U-Pb isotopic data from mediumgrade rocks of the lower Penninic unit (Felbertal scheelite mine, Tauern Window, Austria) (abstract). Terra Abstr Suppl 1 to Terra Nova 5:385

    Google Scholar 

  • Eichhorn R, Höll R, Jagoutz E (1994) Geochemical and isotopical investigations of gneisses in the central tauern Window (Austria). Mitt. Österr. Mineral. Ges. 139:S47

  • Finger F, Kraiger H, Steyrer HP (1985) Zur Geochemie des K1-Gneisses der Scheelitlagerstätte Felbertal (Pinzgau/Salzburg) — em Vorbericht. Der Karinthin 92:225–235

    Google Scholar 

  • Frasl G (1958) Zur Seriengliederung der Schieferhülle in den mittleren Hohen Tauern. Jahrb Geol. Bundesanst Austria Wien 101:323–472

    Google Scholar 

  • Frisch W, Raab D (1987) Early Paleozoic back arc and island arc settings in greenstone sequences of the Central Tauern Window (Eastern Alps). Jahrb Geol Bundesanst Austria Wien 129:545–566

    Google Scholar 

  • Gilg HA, Höll R, Kupferschmied MP, Reitz E, Stärk H, Weber-Diefenbach K (1989) Die Basisschieferfolge in der Habachformation im Felber- und Amertal (Tauernfenster, Salzburg). Mitt Österr Geol Ges 81:65–91

    Google Scholar 

  • Grundmann G (1980) Polymetamorphose und Abschätzung der Bildungsbedingungen der smaragdführenden Gesteinsserien der Leckbachscharte, Habachtal, Österreich. Fortschr Mineral 58:39–41

    Google Scholar 

  • Hedenquist JW, Henley RW (1985) Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: their origin, associated breccias and relation to precious metal mineralization. Econ Geol 80:1640–1668

    Google Scholar 

  • Höck V, Kraiger H, Lettner H (1993) Oceanic versus continental origin of the Paleozoic Habach Formation in the vicinity of the Felbertal scheelite deposit (Hohe Tauern, Austria). A geochemical approach. Abh. Geol Bundesanst Austria Wien 49:79–95

    Google Scholar 

  • Höll R (1975) Die Scheelitlagerstätte Felbertal und der Vergleich mit anderen Scheelitvorkommen in den Ostalpen. Bayer Akad Wiss, Math-Naturwiss Kl 157a:1–114

    Google Scholar 

  • Höll R, Schenk P (1988) Metamorphosed hydrothermal eruption breccia (conglomerate) in the Felbertal scheelite deposit, Eastern Alps. Mar Geol 84:273–282

    Google Scholar 

  • Höll R, Ivanova G, Grinenko, V (1987) Sulfur isotope studies of the Felbertal scheelite deposit, Eastern Alps. Miner Deposita 22:301–308

    Google Scholar 

  • Hoernes S, Friedrichsen H (1974) Oxygen isotope studies on metamorphic rocks of the Western Hohe Tauern (Austria). Schweiz Mineral Petrogr Mitt 54:769–788

    Google Scholar 

  • Inger S, Cliff RA (1993) More precise dating of tectonometamorphic evolution in the Eastern Alps; Rb/Sr white mica and U/Pb sphene and allanite ages from the Tauern Window (abstract). Terra Abstr Suppl 1 Terra Nova 5:388

    Google Scholar 

  • Ivanova GF, Naumov VB, Kopneva LA (1987) Fluid-inclusion data on the physicochemical parameters for scheelite formation in various types of deposit. Geochem Int 24/5:48–59

    Google Scholar 

  • Ivanova GF, Bannykh LN, Ignatenko KI, Kluger F (1988) Trace components in scheelite from deposits of various genetic types. Geochem Int 24/12:1–20

    Google Scholar 

  • Ivanova GF, Kopneva LA, Höll R (1990) Fluid inclusions in minerals from the Felbertal stratified scheelite deposit, Austrian Alps. Geochem Int 27/1:14–25

    Google Scholar 

  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurements of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906

    Google Scholar 

  • Koller F, Richter W (1984) Die Metarodingite der Habach-Formation, Hohe Tauern (Österreich). Tschermaks Mineral Petrogr Mitt 33:49–66

    Google Scholar 

  • Krogh TE (1973) A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 73:485–494

    Google Scholar 

  • Krogh TE (1982) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46:637–649

    Google Scholar 

  • Lambert RSJ (1970) A potassium argon study of the margin of the Tauernfenster at Döllach, Austria. Eclogae Geol Helv 63:197–205

    Google Scholar 

  • Loth G, Eichhorn R, Höll R (1993) Zircon studies of scheelite-bearing and scheelite-free rocks from the Felbertal area (Eastern Alps). In: Seltmann R, Kämpf H, Möller P, Knipe S (eds) Metallogeny of collisional orogens of the Hercynian type (abstract), IAGOD-Meet, Geyer, Abst-Vol:91

  • Ludwig KR (1991) A plotting and regression program for radiogenic isotope data. Version 2.53. US Geol Sury Open-file Report 91

  • Manhes G, Minster JF, Allegre CJ (1978) Comparative uranium-thorium-lead and rubidium-strontium study of the Saint Severin amphoterite: consequence for early solar system chronology. Earth Planet Sci Lett 39:14–24

    Google Scholar 

  • Nwe YY, grundmann G (1990) Evolution of metamorphic fluids in shear zones: the record from the emeralds of Habachtal, Tauern Window, Austria. Lithos 25:281–304

    Google Scholar 

  • Peindl P, Höck V (1993) U-Pb and 207/206Pb-dating of zircons from the Habach-Formation (Central Tauern Window, Austria) (abstract). Terra Abstr Suppl 1 Terra Nova 5:393

    Google Scholar 

  • Pestal G (1983) Beitrag zur Kenntnis der Geologie in den mittleren Hohen Tauern im Bereich des Amer- und des Felbertales. PhD-thesis, Univ Munich, Germany

  • Pupin J-P (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Google Scholar 

  • Quadt vA (1992) U-Pb zircon and Sm-Nd geochronology of mafic and ultramafic rocks from the central part of the Tauern Window (Eastern Alps). Contrib Mineral Petrol 110:57–67

    Google Scholar 

  • Raith M, Raase P, Kreutzer H, Müller P (1978) The age of the alpidic metamorphism in the Western Tauern Window, Austrian Alps, according to radiometric dating. In: Cloos H, Roeder D, Schmidt K (eds) Alps, Apennies, Hellenides, Schweitzerbart pp 140–148

  • Reitz E, Höll R (1988) Jungproterozoische Mikrofossilien aus der Habachformation in den mittleren Hohen Tauern und dem nordostbayerischen Grundgebirge. Jahrb Geol Bundesanst Austria Wien 131:329–340

    Google Scholar 

  • Reitz E, Daneck T, Miller H (1989) Ein Nachweis jungprotero-zoischen Alters von Schwarzphylliten am Tauern-Nordrand (Salzburg, Österreich) und seine Bedeutung für den Bau der Hohen Tauern. Jahrb Geol Bundesanst Austria Wien 132: 751–760

    Google Scholar 

  • Sassi FP, Zanferrari G, Zirpoli G (1988) The Caledonian event in the Eastern Alps: a review. In: Flügel HW, Sassi FP, Grecula P (eds) Pre-Variscan and Variscan events in the Alpine-Mediterranean mountain belts. Mineralia Slovaca-Monography, Alfa Bratislava: 431–434

  • Satir M (1975) Die Entwicklungsgeschichte der westlichen Hohen Tauern und der südlichen Ötztalmasse auf Grund radiometrischer Altersbestimmungen. Mem Inst Geol Mineral Univ Padova 30:1–84

    Google Scholar 

  • Schärer U (1980) U-Pb and Rb-Sr dating of a polymetamorphic nappe terrain: The Caledonian Jotun nappe, southern Norway. Earth Planet Sci Lett 63:205–218

    Google Scholar 

  • Schärer U, Allègre C (1982) Uranium-lead system in fragments of a single zircon grain. Nature 295:585–587

    Google Scholar 

  • Schärer U, Krogh TE, Gower CF (1986) Age and evolution of the Grenville Province in eastern Labrador from U-Pb systematics in accessory minerals. Contrib Mineral Petrol 94:438–451

    Google Scholar 

  • Schenk P, Höll R (1989) Metamorphe, hydrothermale Eruption-sbrekzien in der Scheelitlagerstätte Felbertal/Ostalpen (österreich). Mitt Österr Geol Ges 81:93–107

    Google Scholar 

  • Schenk P, Höll R (1991) Evolution of fluids and metamorphic ore remobilization in the Felbertal scheelite deposit, Eastern Alps. Ore Geol Rev 6:425–434.

    Google Scholar 

  • Schenk P, Höll R, Ivanova GF, Naumov VB, Kopmeva LA (1990) Fluid inclusion studies of the Felbertal scheelite deposit. Geol Rundsch 79/2:451–466

    Google Scholar 

  • Seward TM, Shepard DS (1986) Waimangu geothermal field. Mineral Deposita, Monogr Ser 26:81–96

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:15–25

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommision on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Google Scholar 

  • Steyrer HP, Höck V (1985) Geochemistry of the metabasites in the Habach formation (Salzburg, Hohe Tauern, Austria): a preliminary report. Ofioliti 10:441–456

    Google Scholar 

  • Thalhammer OAR, Stumpfl EF, Jahoda R (1989) The Mittersill scheelite deposit, Austria. Econ Geol 84:1153–1171

    Google Scholar 

  • Tucker RD, Raheim A, Krogh TE, Corfu F (1986/87) Uranium-lead zircon and titanite ages from the northern portion of the Western Gneiss Region, south-central Norway. Earth Planet Sci Lett 81:203–211

    Google Scholar 

  • Vavra G, Frisch W (1989) Pre-Variscan back-arc and island-arc magmatism in the Tauern Window (Eastern Alps). Tectonophysics 169:271–280

    Google Scholar 

  • Vavra G, Hansen BT (1991) Cathodoluminescence studies and U/Pb dating of zircons in pre-Mesozoic gneisses of the Tauern Window: Implications for the Penninic basement evolution. Geol Rundsch 80/3:703–715

    Google Scholar 

  • Westenberger H (1983) Über Sammelkristallisation und Remobilisation von Scheelit in der Wolframlagerstätte Felbertal bei Mittersill. Schriftenr Erdwiss Kommiss Österr Akad Wiss 6:83–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichhorn, R., Schärer, U. & Höll, R. Age and evolution of scheelite-hosting rocks in the Felbertal deposit (Eastern Alps): U-Pb geochronology of zircon and titanite. Contr. Mineral. and Petrol. 119, 377–386 (1995). https://doi.org/10.1007/BF00286936

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286936

Keywords

Navigation