Skip to main content
Log in

Muscovite dehydration melting in Si-rich metapelites: microstructural evidence from trondhjemitic migmatites, Roded, Southern Israel

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Making a distinction between partial melting and subsolidus segregation in amphibolite facies migmatites is difficult. The only significant melting reactions at lowpressures, either vapour saturated or muscovite dehydration melting, do not produce melanocratic peritectic phases. If protoliths are Si-rich and K-poor, then peritectic sillimanite and K-feldspar will form in scarce amounts, and may be lost by retrograde rehydration. The Roded migmatites of southern Israel (northernmost Arabian Nubian Shield) formed at P = 4.5 ± 1 kbar and T ≤ 700 °C and include Si-rich, K-poor paragneissic paleosome and trondhjemitic leucosomes. The lack of K-feldspar in leucosomes was taken as evidence for the non-anatectic origin of the Roded migmatites (Gutkin and Eyal, Isr J Earth Sci 47:117, 1998). It is shown here that although the Roded migmatites experienced significant post-peak deformation and recrystallization, microstructural evidence for partial melting is retained. Based on these microstructures, coupled with pseudosection modelling, indicators of anatexis in retrograded migmatites are established. Phase diagram modelling of neosomes shows the onset of muscovite dehydration melting at 4.5 kbar and 660 °C, forming peritectic sillimanite and K-feldspar. Adjacent non-melted paleosomes lack muscovite and would thus not melt by this reaction. Vapour saturation was not attained, as it would have formed cordierite that does not exist. Furthermore, vapour saturation would not allow peritectic K-feldspar to form, however K-feldspar is ubiquitous in melanosomes. Direct petrographic evidence for anatexis is rare and includes euhedral plagioclase phenocrysts in leucosomes and quartz-filled embayments in corroded plagioclase at leucosome-melanosome interfaces. In deformed and recrystallized rocks muscovite dehydration melting is inferred by: (1) lenticular K-feldspar enclosed by biotite in melanosomes, (2) abundant myrmekite in leucosomes, (3) muscovite–quartz symplectites after sillimanite in melanosomes and associated with myrmekite in leucosomes. While peritectic K-feldspar formed in melanosomes by muscovite dehydration melting reaction, K-feldspar crystallizing from granitic melt in adjacent leucosome was myrmekitized. Excess potassium was used in rehydration of sillimanite to muscovite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abu-Alam TS, Stüwe K (2009) Exhumation during oblique transpression: The Feiran–Solaf region, Egypt. J Metamorph Geol 27:439–459. doi:10.1111/j.1525-1314.2009.00827.x

    Article  Google Scholar 

  • Abu El-Enen MM, Will TM, Okrusch M (2004) P–T evolution of the Pan-African Taba metamorphic belt, Sinai, Egypt: Constraints from metapelitic mineral assemblages. J Afr Earth Sci 38:59–78. doi:10.1016/j.jafrearsci.2003.09.002

    Article  Google Scholar 

  • Abu El-Enen MM, Zalata AA, El-Shakour ZAA (2009) Subsolidus and anatectic migmatites: Examples from the Pan-African crystalline basement, southern Sinai, Egypt. Egypt J Geol 53:63–86

    Google Scholar 

  • Amit O, Eyal Y (1976) The genesis of Wadi Magrish migmatites (N-E Sinai). Contrib Mineral Petrol 59:95–110. doi:10.1007/BF00375111

    Article  Google Scholar 

  • Ashworth JR (1985) Migmatites. Blackie & Son, Glasgow

    Book  Google Scholar 

  • Barker F (1979) Trondhjemite: definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemites, Dacites and related Rocks. Developments in Petrology, vol 6. Elsevier, Amsterdam

    Google Scholar 

  • Brown M (2002) Retrograde processes in migmatites and granulites revisited. J Metamorph Geol 20:25–40. doi:10.1046/j.0263-4929.2001.00362.x

    Article  Google Scholar 

  • Cesare B, Ferrero S, Salvioli-Mariani E, Pedron D, Cavallo A (2009) “Nanogranite” and glassy inclusions: The anatectic melt in migmatites and granulites. Geology 37:627–630. doi:10.1130/G25759A.1

    Article  Google Scholar 

  • Chatterjee ND, Froese E (1975) A thermodynamic study of the pseudobinary join muscovite-paragonite in the system KAlSi3O8–NaAlSi3O8–Al2O3– SiO2–H2O. Am Mineral 60:985–993

    Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sc Lett 86:287–306. doi:10.1016/0012-821X(87)90227-5

    Article  Google Scholar 

  • Connolly JAD (2009) The geodynamic equation of state: What and how. Geochem Geophys Geosyst 10:Q10014. doi:10.1029/2009GC002540

    Article  Google Scholar 

  • Cosca MA, Shimron A, Caby R (1999) Late Precambrian metamorphism and cooling in the Arabian–Nubian Shield: Petrology and 40Ar/39Ar geochronology of metamorphic rocks of the Elat area (Southern Israel). Precambrian Res 98:107–127. doi:10.1016/S0301-9268(99)00044-3

    Article  Google Scholar 

  • Cruciani G, Franceschelli M, Elter FM, Puxeddu M, Utzeri D (2008) Petrogenesis of Al–silicate-bearing trondhjemitic migmatites from NE Sardinia, Italy. Lithos 102:554–574. doi:10.1016/j.lithos.2007.07.023

    Article  Google Scholar 

  • Druckman Y, Weissbrod T, Garfunkel Z (1993) Sheets 25, 26: Yotvata and Elat. Geological Map of Israel 1:100,000. The Geological Survey of Israel, Jerusalem

    Google Scholar 

  • Eliwa H, Abu El-Enen MM, Khalaf I, Itaya T, Murata M (2008) Metamorphic evolution of Neoproterozoic metapelites and gneisses in the Sinai, Egypt: Insights from petrology, mineral chemistry and K–Ar age dating. J Afr Earth Sci 51:107–122. doi:10.1016/j.jafrearsci.2007.12.007

    Article  Google Scholar 

  • Eyal Y, Amit O (1984) The Magrish Migmatites (Northeastern Sinai) and their genesis by metamorphic differentiation triggered by a change in the strain orientation. Isr J Earth Sci 33:189–200

    Google Scholar 

  • Ferrero S, Bartoli O, Cesare B, Salvioli-Mariani E, Acosta-Vigil A, Cavallo A, Groppo C, Battiston S (2012) Microstructures of melt inclusions in anatectic metasedimentary rocks. J Metamorph Geol 30:303–322. doi:10.1111/j.1525-1314.2011.00968.x

    Article  Google Scholar 

  • Ferry J, Spear F (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117. doi:10.1007/BF00372150

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Garcìa-Casco A, Torres-Roldàn RL, Millàn GPM, Haissen F (2001) High-grade metamorphism and hydrous melting of metapelites in the Pinos terrane (W Cuba): Evidence for crustal thickening and extension in the northern Caribbean collisional belt. J Metamorph Geol 19:699–715. doi:10.1046/j.0263-4929.2001.00343.x

    Article  Google Scholar 

  • Garfunkel Z (1980) Contribution to the geology of the Precambrian of the Elat area. Isr J Earth Sci 29:25–40

    Google Scholar 

  • Ghent ED, Stout MZ (1981) Geobarometry and geothermometry of plagioclase-biotite-garnet-muscovite assemblages. Contrib Mineral Petrol 76:92–97. doi:10.1007/BF00373688

    Article  Google Scholar 

  • Gupta LN, Johannes W (1982) Petrogenesis of a stromatic migmatite (Nelaug, Southern Norway). J Petrol 23:548–567. doi:10.1093/petrology/23.4.548

    Article  Google Scholar 

  • Gutkin V (1996) Geological mapping of the Mount Shelomo area, Elat. Master’s thesis, Ben-Gurion University of the Negev, Beer Sheva, in Hebrew

  • Gutkin V, Eyal Y (1998) Geology and evolution of Precambrian rocks, Mt. Shelomo, Elat area. Isr J Earth Sci 47:1–17

    Google Scholar 

  • Gutkin V, Vapnik Y, Eyal Y (1999) Fluid-inclusion study and thermometry of migmatites in the Mount Shelomo area (Elat, southern Israel). Afr Geosci Rev 6:159–176

    Google Scholar 

  • Harris NBW, Caddick M, Kosler J, Goswami S, Vance D, Tindle AG (2004) The pressure–temperature–time path of migmatites from the Sikkim Himalaya. J Metamorph Geol 22:249–264. doi:10.1111/j.1525-1314.2004.00511.x

    Article  Google Scholar 

  • Hasalová P, Schulmann K, Lexa O, Štípská P, Hrouda F, Ulrich S, Haloda J, Týcová P (2008) Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss: a new model based on quantitative microstructural analysis. J Metamorph Geol 26:29–53. doi:10.1111/j.1525-1314.2007.00743.x

    Article  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447. doi:10.1007/BF00310910

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343. doi:10.1111/j.1525-1314.1998.00140.x

    Article  Google Scholar 

  • Holland TJB, Powell R (2001) Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J Petrol 42:673–683. doi:10.1093/petrology/42.4.673

    Article  Google Scholar 

  • Hollister LS, Grissom GC, Peters EK, Stowell HH, Sisson VB (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72:231–239

    Google Scholar 

  • Holness MB, Cesare B, Sawyer EW (2011) Melted rocks under the microscope: Microstructures and their interpretation. Elements 7:247–252. doi:10.2113/gselements.7.4.247

    Article  Google Scholar 

  • Johannes W (1985) The significance of experimental studies for the formation of migmatites. In: Ashworth, JR (ed).Migmatites, Blackie & Son, Glasgow, pp 36–85

  • Johannes W, Gupta LN (1982) Origin and evolution of a migmatite. Contrib Mineral Petrol 79:114–123. doi:10.1007/BF01132881

    Article  Google Scholar 

  • Kabesh M, Asran AM, Rahman EA (2012) Mineral chemistry of banded migmatites from Hafafit and Feiran areas, Egypt. Arab J Geosci:1–13. doi:10.1007/s12517-012-0628-0

  • Katz O (1997) The metamorphism and the structure of the south eastern Roded block; contribution to the Precambrian basement evolution research. Sc Thesis. The Hebrew University, Jerusalem, in Hebrew

    Google Scholar 

  • Katz O, Avigad D, Matthews A, Heimann A (1998) Precambrian metamorphic evolution of the Arabian–Nubian shield in the Roded area, southern Israel. Isr J Earth Sci 47:93–110

    Google Scholar 

  • Kleemann U, Reinhardt J (1994) Garnet-biotite thermometry revisited: The effect of AlVI and Ti in biotite. Eur J Mineral 6:925–941

    Google Scholar 

  • Kohn MJ, Spear FS, Valley JW (1997) Dehydration-melting and fluid recycling during metamorphism: Rangeley Formation, New Hampshire, USA. J Petrol 38:1255–1277. doi:10.1093/petroj/38.9.1255

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Mahar EM, Baker JM, Powell R, Holland TJB, Howell N (1997) The effect of Mn on mineral stability in metapelites. J Metamorph Geol 15:223–238. doi:10.1111/j.1525-1314.1997.00011.x

    Article  Google Scholar 

  • Matthews A, Reymer APS, Avigad D, Cochin J, Marco S (1989) Pressures and temperatures of Pan-African high-grade metamorphism in the Elat Association, NE Sinai. Isr J Earth Sci 38:1–17

    Google Scholar 

  • Morag N, Avigad D, Gerdes A, Belousova E, Harlavan Y (2011) Crustal evolution and recycling in the northern Arabian-Nubian Shield: New perspectives from zircon Lu–Hf and U–Pb systematics. Precambrian Res 186:101–116. doi:10.1016/j.precamres.2011.01.004

    Article  Google Scholar 

  • Nabelek PI, Bartlett CD (1998) Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks. Lithos 45:71–85. doi:10.1016/S0024-4937(98)00026-7

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Patiño Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:689–710. doi:10.1093/petroj/39.4.689

    Article  Google Scholar 

  • Perchuk LL, Lavrent’eva IV (1983) Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena SK (ed) Kinetics and equilibrium in mineral reactions, advances in physical geochemistry, vol 3, pp 199–239

  • Peterman EM, Grove M (2010) Growth conditions of symplectic muscovite + quartz: Implications for quantifying retrograde metamorphism in exhumed magmatic arcs. Geology 38:1071–1074. doi:10.1130/G31449.1

    Article  Google Scholar 

  • Petrík I, Janák M (2002) Migmatites and leucogranites produced by muscovite dehydration melting on the example of the Strážovské Vrchy Mts. (Suchý Core), Western Carpathians. Geolines 14:74–75

    Google Scholar 

  • Pognante U (1992) Migmatites and leucogranites of tertiary age from the high Himalayan Crystallines of Zanskar (NW India): a case history of anatexis of Palaeozoic orthogneisses. Mineral Petrol 46:291–313. doi:10.1007/BF01173569

    Article  Google Scholar 

  • Ragab AI, El-Gharabawi RI (1989) Wadi El-Hudi migmatites, east of Aswan, Egypt: a geological study and some geotectonic implications for the eastern desert of Egypt. Precambrian Res 44:67–79. doi:10.1016/0301-9268(89)90076-4

    Article  Google Scholar 

  • Sadek Ghabrial D (2003) Petrological study of Taba migmatites, east central Sinai, Egypt. MERC Ain Shams Univ. Earth Sci Ser 17:58–72

    Google Scholar 

  • Sawyer EW (1987) The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. J Petrol 28:445–473. doi:10.1093/petrology/28.3.445

    Article  Google Scholar 

  • Sawyer EW (1999) Criteria for the recognition of partial melting. Phys Chem Earth Pt A 24:269–279. doi:10.1016/S1464-1895(99)00029-0

    Article  Google Scholar 

  • Sawyer EW (2008a) Atlas of Migmatites. The Canadian Mineralogist. Special Publication 9, NRC Research Press, Ottawa

    Google Scholar 

  • Sawyer EW (2008b) Working with migmatites; nomenclature for the constituent parts. In: Sawyer EW, Brown M (eds) Working with migmatites, Short Course Series - Mineralogical Association of Canada, vol 38. Mineralogical Association of Canada, Quebec, pp 1–28

    Google Scholar 

  • Sawyer EW, Cesare B, Brown M (2011) When the continental crust melts. Elements 7:229–234. doi:10.2113/gselements.7.4.229

    Article  Google Scholar 

  • Shimron AE (1972) The Precambrian structural and metamorphic history of the Elat area. PhD thesis. The Hebrew University, Jerusalem

  • Solar GS (2008) The interplay between tectonics/structure and migmatite morphology in the field. In: Sawyer EW, Brown M (eds) Working with migmatites, Short Course Series - Mineralogical Association of Canada, vol 38. Mineralogical Association of Canada, Quebec, pp 145–158

    Google Scholar 

  • Solar GS, Brown M (2001) Petrogenesis of migmatites in Maine, USA: Possible source of peraluminous leucogranite in plutons?J Petrol 42:789–823. doi:10.1093/petrology/42.4.789

    Article  Google Scholar 

  • Spear FS, Kohn MJ, Cheney JT (1999) P–T paths from anatectic pelites. Contrib Mineral Petrol 134:17–32. doi:10.1007/s004100050466

    Article  Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22:319–351. doi:10.1146/annurev.ea.22.050194.001535

    Article  Google Scholar 

  • Tajčmanová L, Connolly JAD, Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in biotite. J Metamorph Geol:153–165. doi:10.1111/j.1525-1314.2009.00812.x

  • Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am J Sci 282:1567–1595. doi:10.2475/ajs.282.10.1567

    Article  Google Scholar 

  • Väisänen M, Hölttä P (1999) Structural and metamorphic evolution of the Turku migmatite complex, southwestern Finland. Bull Geol Soc Finl 71:177–218

    Google Scholar 

  • Vernon RH (2004) A Practical Guide to Rock Microstructure. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vernon RH (2011) Microstructures of melt-bearing regional metamorphic rocks. In: van Reenen DD, Kramers JD, McCourt S, Perchuk L (eds) Origin and evolution of precambrian high-grade gneiss terranes, with special emphasis on the Limpopo complex of Southern Africa. Geol Soc Am Mem, vol 207, pp 1–11. doi:10.1130/2011.1207(01)

  • Vernon RH, Collins WJ (1988) Igneous microstructures in migmatites. Geology 16:1126–1129. doi:10.1130/0091-7613(1988)016<1126:IMIM>2.3.CO;2

    Article  Google Scholar 

  • White AJR (1966) Genesis of migmatites from the Palmer region of south Australia. Chem Geol 1:165–200. doi:10.1016/0009-2541(66)90015-5

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2001) Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). J Metamorph Geol 19:139–153. doi:10.1046/j.0263-4929.2000.00303.x

    Article  Google Scholar 

  • Whitney DL, Irving AJ (1994) Origin of K-poor leucosomes in a metasedimentary migmatite complex by ultrametamorphism, syn-metamorphic magmatism and subsolidus processes. Lithos 32:173–192. doi:10.1016/0024-4937(94)90038-8

    Article  Google Scholar 

  • Yuguchi T, Nishiyama T (2008) The mechanism of myrmekite formation deduced from steady-diffusion modeling based on petrography: Case study of the Okueyama granitic body, Kyushu, Japan. Lithos 106:237–260. doi:10.1016/j.lithos.2008.07.017

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Omar Bartoli and an anonymous reviewer for constructive and thorough reviews. Discussions with Jamie Connolly concerning Perple_X modelling are greatly appreciated. Emilie Bruand and Bernardo Cesare are thanked for their reviews of a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Anenburg.

Additional information

Editorial handling: G. Hoinkes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anenburg, M., Katzir, Y. Muscovite dehydration melting in Si-rich metapelites: microstructural evidence from trondhjemitic migmatites, Roded, Southern Israel. Miner Petrol 108, 137–152 (2014). https://doi.org/10.1007/s00710-013-0289-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-013-0289-z

Keywords

Navigation