Skip to main content

Advertisement

Log in

Evolution of the middle crust beneath the western Pannonian Basin: a xenolith study

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Felsic to mafic granulite xenoliths from late Neogene basalt pyroclastics in four localities of the western Pannonian Basin (Beistein, Kapfenstein, Szigliget and Káptalantóti (Sabar-hegy) were studied to find out their metamorphic and fluid history. The characteristic mineral assemblage of the granulites consists of Pl + Opx + Qtz ± Cpx ± Bt ± Grt ± Kfs. Based on abundant magmatic relic microstructural domains occurring in these rocks, the potential precursors might have been predominantly felsic igneous or high to ultrahigh temperature rocks. Ternary feldspar thermometry provides a rough estimate of temperatures of about 920–1070 °C. The first fluid invasion event, which is linked with this early high to ultrahigh temperature stage is characterised by primary pure CO2 inclusions in apatite and zircon. The densest primary CO2 inclusions indicate 0.52–0.64 GPa pressure at the estimated temperature range of crystallization. According to mineral equilibria and geothermobarometry, the high to ultrahigh temperature rock cooled and crystallized to granulite of predominantly felsic composition at about 750–870 °C and 0.50–0.75 GPa in the middle crust, between 20 and 29 km depths. The second fluid invasion event is recorded by primary CO2-rich fluid inclusions hosted in the granulitic mineral assemblage (plagioclase, quartz and orthopyroxene). In addition to CO2, Raman spectroscopy revealed the presence of minor N2, H2S, CO and H2O in these inclusions. Partial melting of biotite-bearing assemblages could be connected to the next fluid invasion shown by secondary CO2-rich fluids recorded along with healed fractures in plagioclase, clinopyroxene and orthopyroxene. This event could have happened at depths similar to the previous ones. The final step in the granulite evolution was the sampling in the middle crust and transportation to the surface in form of xenoliths by mafic melt. This event generated temperature increase and pressure decrease and thus, limited melting of the xenoliths. The youngest fluid inclusion generation, observed mostly in healed fractures of felsic minerals, could be associated with this event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balogh K, Árva-Sós E, Pécskay Z (1986) K/Ar dating of post-Sarmatian alkali basaltic rocs in Hungary. Acta Mineral Petrogr Szeged 28:75–93

    Google Scholar 

  • Balogh K, Lobitzer H, Pécskay Z, Ravasz Cs, Solti G (1990) K/Ar age of tertiary volcanics of Eastern Styria and Burgenland. M Áll Földtani Intézet jelentése Part 1. 451–468. (in Hungarian with English Abstract)

  • Berkesi M, Hidas K, Guzmics T, Dubessy J, Bodnar RJ, Szabó C, Vajna B, Tsunogae T (2009) Detection of small amounts of H2O in CO2-rich fluid inclusions using Raman spectroscopy. J Raman Spectrosc 40:1461–1463

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four phase lherzolites II. New thermobarometers and practical assessment of existing thermobarometers. J Petrol 31:1353–1378. doi:10.1093/petrology/31.6.1313

    Article  Google Scholar 

  • Brown PE, Lamb WM (1989) P-V-T properties of fluids in the system H2O-CO2-NaCl: new graphical presentations and implications for fluid inclusion studies. Geochim Cosmochim Acta 53:1209–1221

    Article  Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100(B7):9761–9788

    Article  Google Scholar 

  • Csontos L (1995) Tertiary tectonic evolution of the Intra-Carpathian area: a review. Acta Volcanol 7:1–15

    Google Scholar 

  • Dégi J, Abart R, Török K, Rhede D, Petrishcheva E (2009) Evidence for xenolith—host basalt interaction from chemical patterns in Fe–Ti-oxides from mafic granulite xenoliths of the Bakony–Balaton Volcanic field (W-Hungary). Miner Petrol 95(3):219–234. doi:10.1007/s00710-008-0035-0

    Article  Google Scholar 

  • Dégi J, Abart R, Török K, Bali E, Wirth R, Rhede D (2010) Symplectite formation during decompression induced garnet breakdown in lower crustal mafic granulite xenoliths: mechanisms and rates. Contrib Mineral Petrol 159:293–314. doi:10.1007/s00410-009-0428-z

    Article  Google Scholar 

  • Dobosi G, Downes H, Embey-Isztin A, Jenner GA (2003a) Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian Basin (Hungary). Neues Jb Mineral Abh 178:217–238

    Article  Google Scholar 

  • Dobosi G, Kempton P, Downes H, Embey-Isztin A, Thirlwall M, Greenwood P (2003b) Lower crustal xenoliths from the Pannonian Basin, Hungary. Part 2: Sr-Nd-Pb-Hf and O isotope evidence for formation of continental lower crust by tectonic emplacement of oceanic crust. Contrib Mineral Petrol 144:671–683

    Article  Google Scholar 

  • Dooley DF, Patiño-Douce AE (1996) Fluid-absent melting of F-rich phlogopite + rutile + quartz. Am Mineral 81:202–212

    Google Scholar 

  • Downes H, Embey-Isztin A, Thirlwall MF (1992) Petrology and geochemistry of spinel peridotite xenoliths from Hungary: evidence for an association between enrichment and deformation in the mantle. Contrib Mineral Petrol 109:340–354

    Article  Google Scholar 

  • Embey-Isztin A, Scharbert HG, Dietrich H, Poultidis H (1989) Petrology and geochemistry of peridotite xenoliths in alkali basalts from the Transdanubian Volcanic Region, West Hungary. J Petrol 30(1):79–105

    Article  Google Scholar 

  • Embey-Isztin A, Scharbert HG, Dietrich H, Poultidis H (1990) Mafic granulites and clinopyroxenite xenoliths from the Transdanubian Volcanic Region (Hungary): implications for the deep structure of the Pannonian Basin. Mineral Mag 54:463–483

    Article  Google Scholar 

  • Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Ingram GA, Harmon RS, Scharbert HG (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J Petrol 34(2):317–343

    Article  Google Scholar 

  • Embey-Isztin A, Downes H, Kempton P, Dobosi G, Thirlwall M (2003) Lower crustal xenoliths from the Pannonian Basin, Hungary. Part 1: mineral chemistry, thermobarometry and petrology. Contrib Mineral Petrol 144:652–670

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Grassl H, Neubauer F, Millahn K, Weber F (2004) Seismic image of the deep crust at the eastern margin of the Alps (Austria): indications for crustal extension in a convergent orogen. Tectonophysics 380:105–122

    Article  Google Scholar 

  • Gross M, Fritz I, Piller W, Soliman A, Harzhauser M, Hubmann B, Moser B, Scholger R, Suttner T, Bojar HP (2007) The neogene of the Styrian Basin—guide to excursions. Joannea Geol Palaeontol 9:117–193

    Google Scholar 

  • Holloway JR (1981) Compositions and volumes of supercritical fluids in the Earth’s crust. In: Hollister LS, Crawford ML (eds) MAC short course in fluid inclusions, vol 6. Mineralogical Association of Canada, pp 13–38

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226:333–357

    Article  Google Scholar 

  • Horváth F (1995) Phases of compression during evolution of the Pannonian Basin and its bearing on hydrocarbon exploration. Mar Petrol Geol 12:837–844

    Article  Google Scholar 

  • Jugovics L (1968) Structure of the Basalt Regions in the Balaton Highland. Yearly Report of the Hung Geol Inst 75–82, Budapest

  • Kázmér M, Kovács S (1985) Permian-Paleogene paleogeography along the eastern part of the Insubric-Periadriatic lineament system: evidence for continental escape of the Bakony-Drauzug Unit. Acta Geol Hung 28:71–84

    Google Scholar 

  • Kempton PD, Downes H, Embey-Isztin A (1997) Mafic granulite xenoliths in neogene alkali basalts from the Western Pannonian Basin: insights into the lower crust of a collapsed orogen. J Petrol 38:941–970

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Kurat G, Embey-Isztin A, Kracher A, Scharbert HG (1991) The upper mantle beneath Kapfenstein and the Transdanubian Volcanic Region, E Austria and W Hungary: a comparison. Mineral Petrol 44:21–38

    Article  Google Scholar 

  • McCarthy TC, Patiño-Douce AE (1998) Empirical calibration of the silica-Ca-tschermak’s-anorthite (SCAn)geobarometer. J Metamorph Geol 16:675–686

    Article  Google Scholar 

  • Mituch E, Posgay K (1972) The crustal structure of Central and Southeastern Europe based on the results of explosion seismology, Hungary. Geophys transactions, Spec Ed 118–129

  • Mogessie A, Fritz I, Ettinger K, Proyer A (2005) Mantle xenoliths in Neogene volcanic rocks of the Styrian Basin. Mitt Österr Miner Ges 150:265–279

    Google Scholar 

  • Nair R, Chacko T (2002) Fluid-absent melting of high-grade semipelites: P-T constraints on orthopyroxene formation and implications for granulite genesis. J Petrol 43:2121–2142

    Article  Google Scholar 

  • Németh K, Martin U (1999) Large hydrovolcanic fi eld in the Pannonian Basin: general characteristics of the Bakony- Balaton Highland Volcanic Field, Hungary. Acta Vulcanol 11:271–282

    Google Scholar 

  • Newton RC (1989) Metamorphic fluid sin the deep crust. Ann Rev Earth Planet Sci 17:385–412

    Article  Google Scholar 

  • Panaiotu CG, Pécskay Z, Hambach U, Seghedi I, Panaiotu CE, Tetsumaru I, Orleanu M, Szakács A (2004) Short-lived Quaternary volcanism in the Perşani Mountains (Romania) revealed by combined K-Ar and paleomagnetic data. Geol Carpath 55:333–339

    Google Scholar 

  • Peterson JW, Newton RC (1990) Experimental biotite-quartz melting in the KMASH-CO2 system and the role of CO2 in the petrogenesis of granites and related rocks. Am Mineral 75:1029–1042

    Google Scholar 

  • Posgay K, Albu I, Mayerova M, Nakladalova Z, Ibrmajer I, Blizkovski M, Aric K, Gutdeutsch R (1991) Contour map of the Mohorovicic discontinuity beneath Central Europe. Geophys Trans 36:7–13

    Google Scholar 

  • Santoshi M, Yoshida M (1991) Lützow-Holm Bay: implications for carbonic metamorphism. Mineral J 15(5):175–189

    Article  Google Scholar 

  • Schneider I (2004) Krusten- und Mantelxenolithe des Steirischen Vulkangebietes – Petrographie und Geochemie. BSc Theses Universität Graz pp 51

  • Spear FS (2003) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America pp 799

  • Stegena L, Géczy B, Horváth F (1975) Late Cenozoic evolution of the Pannonian Basin. Tectonophysics 26:71–90

    Article  Google Scholar 

  • Szabó C, Falus G, Zajacz Z, Kovács I, Bali E (2004) Composition and evolution of lithosphere beneath the Carpathian-Pannonian region: a review. Tectonophysics 393:119–137

    Article  Google Scholar 

  • Szafián P, Tari G, Horváth F, Cloetingh S (1999) Crustal structure of the Alpine–Pannonian transition zone: a combined seismic and gravity study. Int J Earth Sci 88:98–110

    Article  Google Scholar 

  • Török K (1995) Garnet breakdown reaction and fluid inclusions in a garnet clinopyroxenite xenolith from Szentbékkálla (Balaton Highland, W-Hungary). Acta Volcanol 7(2):285–290

    Google Scholar 

  • Török K (2002) Ultrahigh-temperature metamorphism of a buchitised xenolith from the basaltic tuff of Szigliget (Hungary). Acta Geol Hung 45(2):175–192

    Article  Google Scholar 

  • Török K, Bali E, Szabó C, Szakál JA (2003) Sr-barite droplets associated with sulfide blebs in clinopyroxene megacrysts from basaltic tuff (Szentbékkálla, Western Hungary). Lithos 66:275–289

    Article  Google Scholar 

  • Török K, Dégi J, Marosi G, Szép A (2005) Reduced carbonic fluids in mafic granulite xenoliths from the Bakony-Balaton Highland Volcanic Field, W-Hungary. Chem Geol 223:93–108

    Article  Google Scholar 

  • Vaselli O, Downes H, Thirwall MF, Vanucci R, Coradossi N (1996) Spinel-peridotite xenoliths from Kapfenstein (Graz Basin, Eastern Austria): a geochemical and petrological study. Mineral Petrol 57:23–50

    Article  Google Scholar 

  • Vielzeuf D, Clemens JD (1992) The fluid-absent melting of phlogopite + quartz: experiments and models. Am Mineral 77:1206–1222

    Google Scholar 

  • Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol 117:375–393

    Article  Google Scholar 

  • Vielzeuf D, Schmidt MW (2001) Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contrib Mineral Petrol 141:251–267

    Article  Google Scholar 

  • Wen S, Nekvasil H (1994) SOLVCALC: an interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry. Comp Geosci 20:1025–1040

    Article  Google Scholar 

  • Wijbrans J, Németh K, Martin U, Balogh K (2007) 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J Volcanol Geotherm Res 164:193–204

    Article  Google Scholar 

  • Wopenka B, Pasteris JD (1987) Raman intensities and detection limits of geochemically relevant gas mixtures for a laser Raman microprobe. Anal Chem 59:2165–2170

    Article  Google Scholar 

  • Yan QZ, Mechie J (1989) A fine structural section through the crust and lower lithosphere along axial region of the Alps. Geophys J 98:465–488

    Article  Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge the support from the Austrian-Hungarian Action Fund (to FK and CSZ). Some of the samples have come from Museum Joanneum, Graz, we are grateful for their contribution.

The authors gratefully appreciate the kind help of Márta Berkesi, Zsanett Pintér and Miklós Veres with the Raman analyses. We wish to acknowledge the two anonymous referees on behalf of the journal for their constructive criticism on the earlier version of the manuscript. A.M. thanks Miss Katharina Kuerbisch for the drawing of Fig. 1c-the sketch of the Styrian Basin. This is the publication N 55 of the LRG, ELTE in collaboration with MFGI and the University of Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kálmán Török.

Additional information

Editorial handling: R. Abart

Rights and permissions

Reprints and permissions

About this article

Cite this article

Török, K., Németh, B., Koller, F. et al. Evolution of the middle crust beneath the western Pannonian Basin: a xenolith study. Miner Petrol 108, 33–47 (2014). https://doi.org/10.1007/s00710-013-0287-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-013-0287-1

Keywords

Navigation