Skip to main content

Advertisement

Log in

Petrology of contact metamorphic metapelites from the southern rim of the Permian Brixen Granodiorite (South Tyrol, italy)

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Brixen Granodiorite is part of the Permian calc-alkaline plutonic association (Brixen Granodiorite, Ifinger Granite, Kreuzberg Granite, Cima d’Asta Granitoid) that intruded the Variscan Southalpine metamorphic basement. The Brixen Granodiorite is located to the south of the Periatriatic Lineament in the eastern part of the Southalpine basement complex and comprises a series of tonalitic, granitic and granodioritc intrusions, which were emplaced during the Permian (280 Ma) into the country rocks of the Brixen Quarzphyllites. The depth of these Southalpine granodioritic intrusions was less than 10 km (P ≤ 0.3 GPa) and solidus temperatures were 670–720 °C (Visona, Mem Sci Geol 47:111–124, 1995; Acquafredda et al., Miner Petrogr Acta XL:45–53, 1997; Wyhlidal et al., Austr J Earth Sci 102:181–192, 2009). Only a small, about 200 m wide, contact aureole formed at the southern rim of the Brixen Granodiorite near the village Franzensfeste/Fortezza (South-Tyrol, Italy). Within the contact aureole four different zones can be distinguished based upon mineralogical, mineral chemical and textural features. Approximately 200 m from the granite contact zone I occurs. The rocks from this zone are macroscopically still quartzphyllites and are characterized by two texturally and chemically different generations of micas (muscovite, biotite) and the appearance of cordierite. Zone II is characterized by quartzphyllites containing pseudomorphs of cordierite + biotite after garnet. The inner contact aureole (zone III) starts approximately 50 m from the granite contact and shows already typical hornfels textures. This zone is characterized by the first occurrence of andalusite. In the innermost area (zone IV), ca 10 m from the granite contact, spinel and corundum occur. Geothermometry (two-feldspar-, Ti-in-biotite) yielded an increase in temperature from 540 °C in the outermost aureole (zone I) to <740 °C in the innermost aureole (zone IV). Pseudosection modelling of hornfelses from zones III and IV also resulted in similar P-T conditions of <0.28 GPa and <620 °C. This contact aureole represents one of the few well-developed remaining areas of Permian contact metamorphism in the Southalpine domain, which are otherwise mostly obliterated by late-stage hydrothermal alteration in the course of the Alpine tectonic overprint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abart R, Martinelli W (1991) Variszische und alpidische Entwicklungsgeschichte des Wölzer Kristallins (Steiermark, Österreich). Mitt Ges Geol Bergbaust Österr 37:1–14

    Google Scholar 

  • Acquafredda P, Bargossi GM, Caggianelli A, Rottura A (1997) Emplacement depths of Permian granitoids from central-eastern Southern Alps: estimates from hornblende-plagioclase thermobarometry. Miner Petrogr Acta XL:45–53

    Google Scholar 

  • Bargossi GM, D’Amico C, Visona D (1979) Hercynian plutonism in the Southern Alps. A brief report. In: Sassi FP (Ed) IGCP No. 5. Newsletter 1:9–32

    Google Scholar 

  • Bargossi GM, Mair V, Morelli C, Sapelza A (1999a) The Atesino volcanic district (Bolzano-Trento Area): a general outline. Field trip Guide Book 23–25:21–25

    Google Scholar 

  • Bargossi GM, Avanzini M, Mair V, Morelli C, Sapelza A (1999b) The Monte Luco volcanic sequence (Bolzano-Trento Area). Field trip Guide Book 23–25:25–26

    Google Scholar 

  • Barth S (1994) Calc-alkaline basic to silicic rock suites from the late Hercynian Atesina-Cima d’Asta volcano-plutonic complex. N Jb Mineral Abh 168:15–46

    Google Scholar 

  • Barth S, Oberli F, Meier M (1994) Th-Pb versus U-Pb isotope systematics in allanite from co-genetic rhyolite and granodiorite; implications for geochronology. Earth Planet Sci Lett 124:149–159

    Article  Google Scholar 

  • Bellieni G, Molin GM, Visona D (1979) The petrogenetic significance of the garnets in the intrusive massifs of Bressanone and Vedrette di Ries (Eastern Alps-Italy). N Jb Mineral Abh 136:238–253

    Google Scholar 

  • Benisek A, Kroll H, Cemic L (2004) New developments in two-feldspar thermometry. Am Mineral 89:1496–1504

    Google Scholar 

  • Benisek A, Dachs E, Kroll H (2010) A ternary feldspar-mixing model based on calorimetric data: development and application. Contrib Mineral Petrol 160:327–337

    Article  Google Scholar 

  • Bernhard F, Hoinkes G (1999) Polyphase micaschists of the central Wölzer Tauern, Styria, Austria. Eur J Mineral Beih 11:32

    Google Scholar 

  • Bertoldi C, Proyer A, Garbe-Schönberg D, Behrens H, Dachs E (2004) Comprehensive chemical analyses of natural cordierites: implications for exchange mechanisms. Lithos 78:389–409

    Article  Google Scholar 

  • Bertotti G, Picotti V, Bernoulli D, Castellarin A (1993) From rifting to drifting: tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous. Sed Geol 86:53–76

    Article  Google Scholar 

  • Bonin B, Brandley P, Bussy F, Desmons J, Eggemberger U, Finger F, Graf K, Marro C, Mercolli I, Oberrhänsli R, Ploquin A, von Quadt A, von Raumer J, Schaltegger U, Steyrer HP, Visonà D, Vivier G (1993) Late Variscan magmatic evolution of the Alpine basement. In: von Raumer J, Neubauer F (eds) The pre-Mesozoic geology in the Alps. Springer Verlag, Berlin, pp 169–199

    Google Scholar 

  • Boriani A, Peyronel Pagliani G (1986) Rapporti tra le plutoniti erciniche e le metamorfiti del “Massiccio dei Laghi” nella zona del Monte Cerano (bass val d’Ossola). Rend Soc Ital Mineral Petrol 24:111–142

    Google Scholar 

  • Borsi S, Del Moro A, Ferrara G (1972) Eta radiometriche delle rocce intrusive del massiccio di Bressanone-Ivigna-Monte Croce (Alto Adige). Boll Soc Geol Ital 91:387–406

    Google Scholar 

  • Brodie KH, Rex D, Rutter EH (1989) On the age of deep crustal extensional faulting in the Ivrea zone, Northern Italy. Geol Soc Lond Spec Publ 45:203–210

    Article  Google Scholar 

  • Colombo A, Tunesi A (1999) Pre-Alpine metamorphism of the Southern Alps west of the Giudicarie Line. Schweiz Mineral Petrogr Mitt 79:63–77

    Google Scholar 

  • De Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016

    Article  Google Scholar 

  • Del Moro A, Visona D (1982) The epiplutonic hercynian complex of bressanone (Brixen, Eastern Alps, Italy). N Jb Miner Abh 145:66–85

    Google Scholar 

  • Engel AEJ, Engel CG (1960) Progressive metamorphism and granitization of the major paragneis, northwest Adirondack Mountains, New York, Part 2. Mineralogy. Bull Geol Soc Am 71:1–58

    Article  Google Scholar 

  • Exner C (1972) Geologie der Karawankenplutone östlich von Eisenkappel (Kärnten). Mitt Österr Geol Ges 64:1–108

    Google Scholar 

  • Exner C (1976) Die geologische Position der Magmatite des Periadriatischen Lineaments. Verh Geol BA Wien 1976:3–64

    Google Scholar 

  • Forbes WC, Flower MFJ (1974) Phase relations of titan-phlogopite: A refractory phase in the upper mantle? Earth Planet Sci Lett 22:60–66

    Article  Google Scholar 

  • Fuhrmann ML, Lindsley DL (1988) Ternary feldspar modelling and themometry. Am Mineral 73:201–215

    Google Scholar 

  • Gordillo CE, Schreyer W, Werding G, Abraham K (1985) Lithium in NaBe-cordierites from El Penon, Sierra de Cordoba, Argentina. Contrib Mineral Petrol 90:93–100

    Article  Google Scholar 

  • Habler G, Thöni M (1998) Die prämesozoische Niederdruckmetamorphose in der polymetamorphen Gneisgruppe der NW Saualpe (Arbeitsgebiet N von Knappenberg/Kärnten). Mitt Österr Min Ges 143:291–293

    Google Scholar 

  • Harley SL, Thompson P, Hensen BJ, Buick IS (2002) Cordierite as a sensor of fluid conditions in high-grade metamorphism and crustal anatexis. J Metamorph Geol 20:71–86

    Article  Google Scholar 

  • Henry DJ, Guidotti CV (2002) Titanium in biotite from metapelitic rocks: temperature effects, crystal-chemical controls, and petrologic applications. Am Mineral 87:375–382

    Google Scholar 

  • Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. Am Mineral 90:316–328

    Article  Google Scholar 

  • Hoinkes G, Koller F, Rantitsch G, Dachs E, Höck V, Neubauer F, Schuster R (1999) Alpine metamorphism of the Eastern Alps. Schweiz Mineral Petrograph Mitt 79:155–181

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally-consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 8:89–124

    Article  Google Scholar 

  • Kaindl R, Tropper P, Deibl I (2006) A semi-quantitative technique for determination of CO2 in cordierite by Raman spectroscopy in thin sections. Eur J Mineral 18:331–335

    Article  Google Scholar 

  • Kalt A, Altherr R, Ludwig T (1998) Contact metamorphism in pelitic rocks on the island of Kos (Greece, Eastern Aegean Sea): a test fort he Na-in-cordierite thermometer. J Petrol 59:663–668

    Article  Google Scholar 

  • Klötzli U, Mair V, Bargossi GM (2003) The Bozner Quartzporphyr (Southern Alps, Italy): single zircon U/Pb age evidence for 10 million years of magmatic activity in the Lower Permian. Mitt Österr Mineral Ges 148:187–188

    Google Scholar 

  • Knop E (1996) Experimentelle Kalibrierung des Na-in-Cordierit-Thermometers. Mitt Österr Mineral Ges 141:127

    Google Scholar 

  • Knop E, Mirwald PW (2000) Cordierite as a monitor of fluid and melt sodium activity in metapelites, migmatites and granites: constraints from incorporation experiments. J Conf Abs 5:58

    Google Scholar 

  • Kolesov BA, Geiger CA (2000) Cordierite II: The role of CO2 and H2O. Am Mineral 85:1265–1274

    Google Scholar 

  • Kroll H, Evangelakakis C, Voll G (1993) Two-feldspar geothermometry: a review and revision for slowly cooled rocks. Contrib Mineral Petrol 114:510–518

    Article  Google Scholar 

  • Kwak TAP (1968) Ti in biotite and muscovite as an indication of metamorphic grade in almandine amphibolite facies rocks from Sudbury, Ontario. Geochim Cosmochim Acta 32:1222–1229

    Article  Google Scholar 

  • Mair V, Schuster R, Tropper P (2003) The metamorphic evolution of the Ortler Crystalline. Mitt Österr Mineral Ges 148:215–217

    Google Scholar 

  • Malavieille J, Calassou S, Larroque C (1993) Modelisation experimentale des relations tectonique sedimentation entre bassin avant-arc et prisme d’accretion. Compt Rend Acad Sci 316:1131–1137

    Google Scholar 

  • Miller C, Thöni M (1997) Eo-Alpine eclogitisation of Permian MORB-type gabbros in the Koralpe (Eastern Alps, Austria): new geochronological, geochemical and petrological data. Chem Geol 137:283–310

    Article  Google Scholar 

  • Miller C, Thöni M, Goessler W, Tessadri R (2011) Origin and age of the Eisenkappel gabbro to granite suite (Carinthia, SE Austrian Alps). Lithos 125:434–448

    Article  Google Scholar 

  • Mirwald PW (1986) Ist Cordierit ein Geothermometer. Fortschr Mineral 64:119

    Google Scholar 

  • Mirwald PW (2000) The incorporation of H2O and CO2 in cordierite at varying sodium content under subsolidus conditions. Eur J Mineral Beih 12:128

    Google Scholar 

  • Mirwald PW, Knop E (1995) Der Einfluss der Kanalkomponenten H2O, CO2 und Na+ auf die oberste Stabilität von Mg-Cordierit - eine experimentelle Pilotstudie und ihre Bedeutung für das Granat-Cordierit-Geobarometer. Geol Paläont Mitt Innsbruck 20:153–164

    Google Scholar 

  • Mirwald PW, Scola M, Tropper P (2008) Experimental study on the incorporation of Na in Mg-cordierite in the presence of brines. EMPG XII, Innsbruck University Press: 63

  • Monsberger G, Hoinkes G, Thöni M (1994) Geochemie und Kontaktmetamorphose des Eisenkappler Granits. Mitt Österr Mineral Ges 139:349–350

    Google Scholar 

  • Montel JM, Weber C, Pichavant M (1986) Biotite-sillimanite-spinel assemblages in high-grade metamorphic rocks: occurrences, chemographic analysis and thermobarometric interest. Bull Miner 109:555–557

    Google Scholar 

  • Morauf W (1980) Die permische Differentiation und die alpidische Metamorphose des Granitgneis von Wolfsberg, Koralpe, SE-Ostalpen, mit Rb/Sr- und K/Ar-Isotopenbestimmungen. Tschermak Mineral Petrogr Mitt 27:169–185

    Article  Google Scholar 

  • Pattison DRM (1992) Stability of andalusite and sillimanite and the Al2SiO5 triple point: constraints from the Ballachulish aureole, Scotland. J Geol 100:423–446

    Article  Google Scholar 

  • Pattison DRM, Harte B (1991) Petrography and mineral chemistry of pelites. In: Voll G (ed) Equilibrium and kinetics in contact metamorphism. Springer Verlag, Berlin, pp 135–181

    Chapter  Google Scholar 

  • Pattison DRM, Spear FS, Debuhr CL, Cheney JT, Guidotti CV (2002) Thermodynamic modelling of the reaction muscovite + cordierite = Al2SiO5 + biotite + quartz + H2O: constraints from natural assemblages and implications for the metapelitic petrogenetic grid. J Metamorph Geol 20:99–118

    Article  Google Scholar 

  • Perchuk LL, Laverent’eva IV (1983) Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena SK (ed) Kinetics and equilibrium in mineral reactions. Springer, New York, pp 199–239

    Chapter  Google Scholar 

  • Petrascheck W (1905) Über Gesteine der Brixener Masse und ihrer Randbildungen. Jb KK Geol Reichsanst 54

  • Rebay G, Spalla MI (2001) Emplacement at granulite facies conditions of the Sesia-Lanzo metagabbros: an early record of Permian rifting? Lithos 58:85–104

    Article  Google Scholar 

  • Ring U, Richter C (1994) The Variscan structural and metamorphic evolution of the eastern Southalpine basement. J Geol Soc Lond 151:755–766

    Article  Google Scholar 

  • Robert JI (1976) Titanium solubility in synthetic phologopite solid solutions. Chem Geol 17:213–227

    Article  Google Scholar 

  • Rottura A, Del Moro A, Caggianelli A, Bargossi GM, Gasparotto G (1997) Petrogenesis of the Monte Croce granitoids in the context of Permian magmatism in the Southern Alps, Italy. Eur J Mineral 9:1293–1310

    Google Scholar 

  • Rottura A, Bargossi GM, Caggianelli A, Del Moro A, Visona D, Tranne CA (1998) Origin and significance of the Permian high-K calc-alkaline magmatism in the central-eastern Southern Alps, Italy. Lithos 45:329–348

    Article  Google Scholar 

  • Sander B (1906) Geologische Beschreibung des Brixner Granits. Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt 56:707–744

  • Schaltegger U, Brack P (1999) Short-lived events of extension and volcanism in the Lower Permian of the Southern Alps (Northern Italy, Southern Switzerland). J Conf Abstr 4:296–297

    Google Scholar 

  • Schuster R, Thöni M (1996) Permian garnets: indication for a regional Permian metamorphism in the southern part of the Austroalpine basement units. Mitt Ges Geol Bergbaust Österr 141:219–221

    Google Scholar 

  • Schuster R, Scharbert S, Abart R (1999) Permo-Triassic crustal extension during opening of the Neotethyan ocean in the Austroalpine-South Alpine realm. Tüb Geowiss Arb Ser A 52:5–6

    Google Scholar 

  • Schuster R, Scharbert S, Abart R, Frank W (2001) Permo-Triassic extension and related HT/LP metamorphism in the Austroalpine-Southalpine realm. Mitt Ges Geol Bergbaustud Österr 45:111–141

    Google Scholar 

  • Scolari A, Zirpoli G (1970) Fenomeni di metamorphismo di contatto nella fillade sudalpina indotti dal massiccio granitico di Bressanone (Alto Adige). Mem Mus Trident Sci Nat 18:173–222

    Google Scholar 

  • Shaw DM (1956) Geochemistry of pelitic rocks. Part III: major elements and general geochemistry. Geol Soc Am Bull 67:919–934

    Article  Google Scholar 

  • Stähle V, Frenzel G, Hess JC, Saupe F, Schmidt ST, Schneider W (2001) Permian metabasalts and Triassic alkaline dykes in the northern Ivrea Zone: clues to the post-Variscan geodynamic evolution of the Southern Alps. Schweiz Mineral Petrogr Mitt 81:1–21

    Google Scholar 

  • Symmes GH, Ferry JM (1995) Metamorphism, fluid flow and partial melting in pelitic rocks from the Onawa contact aureole, Central Maine, USA. J Petrol 36:587–612

    Google Scholar 

  • Thompson P, Harley S, Carrington D (2002) Sodium and potassium in cordierite - a potential thermometer for melts? Eur J Mineral 14:459–469

    Article  Google Scholar 

  • Thöni M, Jagoutz E (1992) Some new aspects of dating eclogites in orogenic belts: Sm-Nd, Rb-Sr and Pb-Pb isotopic results from the Austroalpine Saualpe and Koralpe type-locality (Carinthia/Styria, SE Austria). Geochim Cosmochim Acta 56:347–368

    Article  Google Scholar 

  • Thöni M, Miller C (2000) Permo-Triassic pegmatites in the Eo-Alpine eclogite facies Koralpe complex, Austria: age and magma source constraints from mineral chemical, Rb-Sr and Sm-Nd isotope data. Schweiz Mineral Petrograph Mitt 80:169–186

    Google Scholar 

  • Thöny WF, Wyhlidal S, Tropper P (2008a) Mineralogical, major, and minor element variations across the Permian contact aureole of the Brixen granodiorite (Franzensfeste, S-Tyrol, Italy). MIMET 2008:112–113

    Google Scholar 

  • Thöny WF, Wyhlidal S, Tropper P (2008b) Minor element variations across the Permian contact aureole of the Brixen granodiorite (Franzensfeste, S-Tyrol, Italy), EGU 2008:A-05024.

  • Thöny WF, Wyhlidal S, Tropper P, Mair V (2009) Petrology of a cordierite-andalusite-bearing granite from the Sattelspitze (Monte Sella), Franzensfeste (South-Tyrol, Italy). Mitt Österr Mineral Ges 155:269–277

    Google Scholar 

  • Thöny WF, Wyhlidal S, Thöny W, Tropper P, Scholger R (2010) The evolution of the magnetic textures across the southern contact aureole of the Brixen Granodiorite (South-Tyrol, Italy). Austr J Earth Sci 103:132–137

    Google Scholar 

  • Visona D (1995) Polybaric evolution of calc-alkaline magmas: the Dioritic belt of the Bressanone-Chiusa igneous complex. Mem Sci Geol 47:111–124

    Google Scholar 

  • Visona D, Alberti F, Stefani C, Stenico L (1987) Le plutoniti di Chiusa, Dosso Lives e Luson: una serie calcalcalina ercinia nelle Alpi Orientali. Mem Sci Geol 39:85–99

    Google Scholar 

  • Wen S, Nekvasil H (1994) SOLVCLAC: an interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry. Comp Geosci 20:1025–1040

    Article  Google Scholar 

  • Wyhlidal S, Thöny WF, Tropper P (2007a) Experimental constrains on the Na-in cordierite thermometer using natural quartzphyllite as starting materials. Mitt Österr Min Ges 153:133

    Google Scholar 

  • Wyhlidal S, Thöny WF, Tropper P (2007b) New experimental constrains on the Na-in cordierite thermometer and its application to high-grade rocks. Suppl Geochim Cosmochim Acta 71:1129

    Google Scholar 

  • Wyhlidal S, Thöny WF, Tropper P, Mirwald PW (2008) Experimental constraints on the Na-in-cordierite thermometer using natural quartzphyllites as starting meterials: the role of P, a(H2O) and Na2O contents of the starting materials. Innsbruck Univ Press 8:118

    Google Scholar 

  • Wyhlidal S, Thöny WF, Tropper P, Mair V (2009) Mineralogical and petrological constraints on Permian contact metamorphism at the rims of the Ifinger Granodiorite and the Kreuzberg Granite (South-Tyrol, Italy). Austr J Earth Sci 102:181–192

    Google Scholar 

  • Wyhlidal S, Thöny WF, Tropper P, Klötzli U, Mair V (2010a) U-Pb geochronology of detrital zircons from a contact metamorphic Brixen Quartzphyllite (South-Tyrol, Italy): evidence for a complex pre-Variscan evolution of the Southalpine basement. Swiss J Geosci 103:273–281

    Article  Google Scholar 

  • Wyhlidal S, Thöny WF, Tropper P, Mair V (2010b) Multi-equilibrium- and pseudosection modelling of the northernmost Southalpine basement (Brixen Quartzphyllite, South-Tyrol, Italy). Mitt Österr Miner Ges 156:159–173

    Google Scholar 

Download references

Acknowledgments

The Financial support through the FWF-project P-17878-N10 to P.T. is gratefully acknowledged. Bernhard Sartory is thanked for his assistance on the electron microprobe. Artur Benisek is thanked for providing the EXCEL spreadsheet of the two-feldspar thermometer and for numerous dicussions. The concise and constructive comments of two anonymous reviewers are also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Tropper.

Additional information

Editorial handling: R. Abart

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyhlidal, S., Thöny, W.F., Tropper, P. et al. Petrology of contact metamorphic metapelites from the southern rim of the Permian Brixen Granodiorite (South Tyrol, italy). Miner Petrol 106, 173–191 (2012). https://doi.org/10.1007/s00710-012-0240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-012-0240-8

Keywords

Navigation