Skip to main content

Advertisement

Log in

Mineral chemical evidence for extremely magnesian subalkaline melts from the Antarctic extension of the Karoo large igneous province

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present a comprehensive mineral chemical dataset (∼400 analyses) on subalkaline meimechitic (Mg-number = 74–80) and ferropicritic (Mg-number = 67–69) dike samples from the Antarctic extension of the Karoo large igneous province (LIP) in Vestfjella, western Dronning Maud Land. Some of the meimechites, previously considered to be cumulates from ferropicritic magmas, are characterized by forsteritic olivine (with core composition up to Fo92) that is in, or close to Fe-Mg equilibrium with the host rock. The olivines are subhedral to euhedral, contain Ti-rich (volcanic) spinel inclusions, have a high CaO content (≥0.19 wt. %), and are thus unlikely to represent xenocrysts from mantle peridotite. Igneous amphibole is found in olivine-hosted, crystallized melt inclusions, indicating that the parental magmas had a H2O content of 1–2 wt. %. The olivine data suggests generation of extremely MgO-rich (up to 25 wt. %) melts during the Karoo magmatism. Based on our petrogenetic modeling, such melts are likely to have originated from the partial melting of garnet peridotite at high pressures (5–6 GPa) and mantle potential temperatures (>1,600°C) that are compatible with the involvement of a mantle plume in the generation of the Karoo LIP. A geochemical comparison of the Vestfjella meimechites with meimechites from the Siberian Traps LIP and the assumed komatiitic parental melts of the Horingbai picrites (Paraná-Etendeka LIP) reveals key similarities, suggesting that all these suites were generated from broadly similar sources and/or by similar melting processes in anomalously hot subcontinental mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albarède F (1992) How deep do common basaltic magmas form and differentiate? J Geophys Res B 97:10, 997–11, 009

    Google Scholar 

  • Anderson DL (2005) Large igneous provinces, delamination, and fertile mantle. Elements 1:271–275

    Article  Google Scholar 

  • Arndt N, Lehnert K, Vasil’ev Y (1995) Meimechites: highly magnesian lithosphere-contaminated alkaline magmas from deep subcontinental mantle. Lithos 34:41–59

    Article  Google Scholar 

  • Arndt NT, Kerr AC, Tarney J (1997) Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts. Earth Planet Sci Lett 146:289–301

    Article  Google Scholar 

  • Arndt N, Chauvel C, Czamanske G, Fedorenko V (1998) Two mantle source, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contrib Mineral Petrol 133:297–313

    Article  Google Scholar 

  • Barton JM Jr, Klemd R, Allsopp HL, Auret SH, Copperthwaite YE (1987) The geology and geochronology of the Annandagstoppane granite, Western Dronning Maud Land, Antarctica. Contrib Mineral Petrol 97:488–496

    Article  Google Scholar 

  • Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Mineral Petrol 115:103–111

    Article  Google Scholar 

  • Boyd FR (1959) Hydrothermal investigations of amphiboles. In: Abelson PH (ed) Researches in geochemistry. Wiley, New York, pp 377–396

    Google Scholar 

  • Burke K, Dewey JF (1973) Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks. J Geol 81:406–433

    Article  Google Scholar 

  • Carlson RW, Czamanske G, Fedorenko V, Ilupin I (2006) A comparison of Siberian meimechites and kimberlites: implications for the source of high-Mg alkalic magmas and flood basalts. Geochem Geophys Geosys 7. doi:10.1029/2006GC001342

  • Coltice N, Phillips BR, Bertrand H, Ricard Y, Rey P (2007) Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35:391–394

    Article  Google Scholar 

  • Corner B (1994) Geological evolution of western Dronning Maud Land within a Gondwana framework: geophysics subprogramme. Final project report to SACAR, Department of Geophysics, Witwaterstrand University, South Africa, 21 pp

  • Cox KG (1978) Flood basalts, subduction, and the break-up of Gondwanaland. Nature 274:47–49

    Article  Google Scholar 

  • Cox KG (1992) Karoo igneous activity, and the early stages of the break-up of Gondwanaland. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the causes of continental break-up. Geol Soc Spec Publ 68:137–148

  • Curtis ML, Riley TR, Owens WH, Leat PT, Duncan RA (2008) The form, distribution and anisotropy of magnetic susceptibility of Jurassic dykes in H.U. Sverdrupfjella, Dronning Maud Land, Antarctica. Implications for dyke swarm emplacement. J Struct Geol 30:1429–1447

    Article  Google Scholar 

  • Duncan RA, Hooper PR, Rehacek J, Marsh JS, Duncan AR (1997) The timing and duration of the Karoo igneous event, southern Gondwana. J Geophys Res B 102:18, 127–18, 138

    Google Scholar 

  • Eggins SM (1992) Petrogenesis of Hawaiian tholeiites: 2, aspects of dynamic melt segregation. Contrib Mineral Petrol 110:398–410

    Article  Google Scholar 

  • Elkins-Tanton LT (2005) Continental magmatism caused by lithospheric delamination. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms. Geol Soc Am Spec Paper 388:449–462

  • Elkins-Tanton LT, Draper DS, Agee CB, Jewell J, Thorpe A, Hess PC (2007) The last lavas erupted during the main phase of the Siberian flood volcanic province: results from experimental petrology. Contrib Mineral Petrol 153:191–209

    Article  Google Scholar 

  • Falloon TJ, Danyushevsky LV (2000) Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 41:257–283

    Article  Google Scholar 

  • Falloon TJ, Danyushevsky LV, Ariskin A, Green DH, Ford CE (2007) The application of olivine geothermometry to infer crystallization temperatures of parental liquids: implications for the temperature of MORB magmas. Chem Geol 241:207–233

    Article  Google Scholar 

  • Fedorenko V, Czamanske G (1997) Results of new field and geochemical studies of the volcanic and intrusive rocks of the Maimecha–Kotuy area, Siberian flood-basalt province (Russia). Int Geol Rev 39:479–531

    Article  Google Scholar 

  • Ford CE, Russell DG, Craven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24:256–265

    Google Scholar 

  • Foulger G (2007) The ‘Plate’ model for the genesis of melting anomalies. In: Foulger G, Jurdy D (eds) The origins of melting anomalies: plumes, plates, and planetary processes. Geol Soc Am Spec Paper 430:1–28

  • Furnes H, Vad E, Austrheim H, Mitchell JG, Garmann LF (1987) Geochemistry of basalt lavas from Vestfjella and adjacent areas, Dronning Maud Land, Antarctica. Lithos 20:337–356

    Article  Google Scholar 

  • Gilbert MC, Helz RT, Popp RK, Spear FS (1982) Experimental studies of amphibole stability. In: Veblen DR, Ribbe PH (eds) Amphiboles: petrology and experimental phase relations. Rev in Min 9B. Min Soc of Am, pp 229–354

  • Green DH, Falloon TJ, Eggins SM, Yaxley GM (2001) Primary magmas and mantle temperatures. Eur J Mineral 13:437–451

    Article  Google Scholar 

  • Groenewald PB, Moyes AB, Grantham GH, Krynauw JR (1995) East Antarctic crustal evolution: geological constraints and modelling in western Dronning Maud Land. Precambrian Res 75:231–250

    Article  Google Scholar 

  • Gualda GAR, Vlach SRF (2005) Stoichiometry-based estimates of ferric iron in calcic, sodic-calcic and sodic amphiboles; a comparison of various methods. An Acad Bras Cienc 77:521–534

    Google Scholar 

  • Hanski EJ (1992) Petrology of the Pechenga ferropicrites and cogenetic Ni-bearing gabbro-wehrlite intrusions, Kola Peninsula, Russia. Geol Surv of Finland Bull 367: 192 pp

    Google Scholar 

  • Harris C, Marsh JS, Duncan AR, Erlank AJ (1990) The petrogenesis of the Kirwan Basalts of Dronning Maud Land, Antarctica. J Petrol 31:341–369

    Google Scholar 

  • Heinonen JS, Luttinen AV (2008) Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: geochemical tracing of ferropicrite sources. Lithos 105:347–364

    Article  Google Scholar 

  • Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem Geophys Geosyst 9. doi:10.1029/2008GC002057

  • Herzberg C, O’Hara MJ (1998) Phase equilibrium constraints on the origin of basalts, picrites, and komatiites. Earth Sci Rev 44:39–79

    Article  Google Scholar 

  • Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of Phanerozoic age. J Petrol 43:1857–1883

    Article  Google Scholar 

  • Herzberg C, Zhang J (1996) Melting experiments on anhydrous peridotite KLB-1: composition of magmas in the upper mantle and transition zone. J Geophys Res B 101:8271–8295

    Article  Google Scholar 

  • Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD (2007) Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem Geophys Geosys 8. doi:10.1029/2006GC001390

  • Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473

    Article  Google Scholar 

  • Horan MF, Walker RJ, Fedorenko VA, Czamanske GK (1995) Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources. Geochim Cosmochim Acta 59:5159–5168

    Article  Google Scholar 

  • Jacobs J, Fanning CM, Henjes-Kunst F, Olesch M, Paech H (1998) Continuation of the Mozambique Belt into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land. J Geol 106:385–406

    Article  Google Scholar 

  • Jacobs J, Bauer W, Fanning CM (2003a) Late Neoproterozoic/early Palaeozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica. Precambrian Res 126:27–53

    Article  Google Scholar 

  • Jacobs J, Fanning CM, Bauer W (2003b) Timing of Grenville-age vs. Pan-African medium- to high grade metamorphism in western Dronning Maud Land (East Antarctica) and significance for correlations in Rodinia and Gondwana. Precambrian Res 125:1–20

    Article  Google Scholar 

  • Jourdan F, Feraud G, Bertrand H, Kampunzu AB, Tshoso G, Watkeys MK, Le Gall B (2005) Karoo large igneous province: brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar age data. Geology 33:745–748

    Article  Google Scholar 

  • Jourdan F, Bertrand H, Schaerer U, Blichert-Toft J, Feraud G, Kampunzu AB (2007a) Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana-Zimbabwe: lithosphere vs. mantle plume contribution. J Petrol 48:1043–1077

    Article  Google Scholar 

  • Jourdan F, Feraud G, Bertrand H, Watkeys MK (2007b) From flood basalts to the inception of oceanization: example from the 40Ar/39Ar high-resolution picture of the Karoo large igneous province. Geochem Geophys Geosys 8. doi:10.1029/2006GC001392

  • Juckes LM (1972) The geology of north-eastern Heimefrontfjella, Dronning Maud Land. British Antarctic Survey, Scientific Reports 65, 44 pp

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671

    Article  Google Scholar 

  • Kogarko LN, Ryabchikov ID (2000) Geochemical evidence for meimechite magma generation in the subcontinental lithosphere of Polar Siberia. J Asian Earth Sci 18:195–203

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Pertermann M (2004) High-pressure partial melting of mafic lithologies in the mantle. J Petrol 45:2407–2422

    Article  Google Scholar 

  • Krynauw JR, Watters BR, Hunter DR, Wilson AH (1991) A review of the field relations, petrology and geochemistry of the Borgmassivet intrusions in the Grunehogna Province, western Dronning Maud Land, Antarctica. In: Thomson MRA, Crame JA, Thomson JW (eds) Geological evolution of Antarctica. International Symposium on Antarctic Earth Sciences 5, Cambridge University Press, United Kingdom, pp 33–39

  • Larsen LM, Pedersen AK (2000) Processes in high-Mg, high-T magmas: evidence from olivine, chromite and glass in Palaeogene picrites from West Greenland. J Petrol 41:1071–1098

    Article  Google Scholar 

  • Lawver LA, Gahagan LM, Coffin MF (1992) The development of paleoseaways around Antarctica. In: Kennett JP, Warnke DA (eds) Antarctic Paleoenvironment: a Perspective on Global Change, Part 1. Antarctic Research Series 58, Am Geophys Union, pp 7–30

  • Le Bas MJ (2000) IUGS reclassification of the high-Mg and picritic volcanic rocks. J Petrol 41:1467–1470

    Google Scholar 

  • Leake BE (1971) On aluminous and edenitic hornblendes. Min Mag J Min Soc 38:389–407

    Article  Google Scholar 

  • Lee CA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279:20–33

    Article  Google Scholar 

  • Lenardic A, Moresi LN, Jellinek AM, Manga M (2005) Continental insulation, mantle cooling, and the surface area of oceans and continents. Earth Planet Sci Lett 234:317–333

    Article  Google Scholar 

  • Luttinen AV, Furnes H (2000) Flood basalts of Vestfjella: Jurassic magmatism across an Archaean-Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica. J Petrol 41:1271–1305

    Article  Google Scholar 

  • Luttinen AV, Ramo OT, Huhma H (1998) Neodymium and strontium isotopic and trace element composition of a Mesozoic CFB suite from Dronning Maud Land, Antarctica: implications for lithosphere and asthenosphere contributions to Karoo magmatism. Geochim Cosmochim Acta 62:2701–2714

    Article  Google Scholar 

  • Luttinen AV, Zhang X, Foland KA (2002) 159 Ma Kjakebeinet lamproites (Dronning Maud Land, Antarctica) and their implications for Gondwana breakup processes. Geol Mag 139:525–539

    Article  Google Scholar 

  • Maurel C, Maurel P (1982) Étude expérimentale de l’équilibre Fe2+-Fe3+ dans les spinelles chromiferes et les liquides silicatés basiques coexistants, à 1 atm. Comptes Rendus de l’Académie des Sciences (Série 2) 295:209–212

    Google Scholar 

  • McDonough WF, Frey FA (1989) Rare earth elements in upper mantle rocks. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Rev in Min 21, Min Soc of Am, pp 100–145

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679

    Google Scholar 

  • Morelli A, Danesi S (2004) Seismological imaging of the Antarctic continental lithosphere: a review. Glob Planet Change 42:155–165

    Article  Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43

    Article  Google Scholar 

  • Putirka KD (2005) Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes. Geochem Geophys Geosys 6. doi:10.1029/2005GC000915

  • Putirka K (2008a) Excess temperatures at ocean islands: implications for mantle layering and convection. Geology 36:283–286

    Article  Google Scholar 

  • Putirka KD (2008b) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley FJ III (eds) Minerals, inclusions and volcanic processes. Rev in Min and Geochem 69, Min Soc of Am, pp 61–120.

  • Putirka KD, Perfit M, Ryerson FJ, Jackson MG (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem Geol 241:177–206

    Article  Google Scholar 

  • Révillon S, Arndt NT, Chauvel C, Hallot E (2000) Geochemical study of ultramafic volcanic and plutonic rocks from Gorgona Island, Colombia: the plumbing system of an oceanic plateau. J Petrol 41:1127–1153

    Article  Google Scholar 

  • Richards MA, Duncan RA, Courtillot VE (1989) Flood basalts and hot-spot tracks: plume heads and tails. Science 246:103–107

    Article  Google Scholar 

  • Riley TR, Leat PT, Curtis ML, Millar IL, Duncan RA, Fazel A (2005) Early-middle Jurassic dolerite dykes from western Dronning Maud Land (Antarctica): identifying mantle sources in the Karoo large igneous province. J Petrol 46:1489–1524

    Article  Google Scholar 

  • Ryabchikov ID, Solovova IP, Kogarko LN, Bray GP, Ntaflos T, Simkin SG (2002) Thermodynamic parameters of generation of meymechites and alkaline picrites in the Maymecha-Kotui province: evidence from melt inclusions. Geochem Int 40:1031–1041

    Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosys 5. doi:10.1029/2003GC000597

  • Schumacher JC (1997) Appendix 2: the estimation of ferric iron in electron microprobe analysis of amphiboles. In: Leake BE, Woolley AR, Arps CES et al (eds) Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Eur J Mineral 9:623–651

  • Semet MP, Ernst WG (1981) Experimental stability relations of the hornblende magnesiohastingsite. Geol Soc Am Bull 92:71–74

    Article  Google Scholar 

  • Simkin T, Smith JV (1970) Minor-element distribution in olivine. J Geol 78:304–325

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Article  Google Scholar 

  • Sobolev AV, Kamenetskaya VS, Kononkova NN (1991) New data on petrology of Siberia meimechites. Geochem Int 8:1084–1095

    Google Scholar 

  • Stone WE, Deloule E, Larson MS, Lesher CM (1997) Evidence for hydrous high-MgO melts in the Precambrian. Geology 25:143–146

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc Spec Publ 42:313–345

  • Thompson RN, Gibson SA (2000) Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature 407:502–506

    Article  Google Scholar 

  • Thompson RN, Gibson SA, Dickin AP, Smith PM (2001) Early Cretaceous basalt and picrite dykes of the southern Etendeka region, NW Namibia: windows into the role of the Tristan mantle plume in Paraná-Etendeka magmatism. J Petrol 42:2049–2081

    Article  Google Scholar 

  • White RS, McKenzie DP (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729

    Article  Google Scholar 

  • Wolmarans LC, Kent KE (1982) Geological investigations in western Dronning Maud Land, Antarctica—a synthesis. S Afr J Antarc Res (Suppl 2), 93 pp

  • Zhang X, Luttinen AV, Elliot DH, Larsson K, Foland KA (2003) Early stages of Gondwana breakup: the 40Ar/39Ar geochronology of Jurassic basaltic rocks from western Dronning Maud Land, Antarctica, and implications for the timing of magmatic and hydrothermal events. J Geophys Res B 108. doi:10.1029/2001JB001070

Download references

Acknowledgements

The comments of Liya Kogarko and an anonymous reviewer, and the editorial remarks by Lalou Gwalani, Edward Sarmiento, and Johann Raith helped to improve the manuscript and are greatly appreciated. Nicholas Arndt, Sébastien Pilet, Sally Gibson, and Colin Devey thoughtfully provided useful suggestions on an earlier draft of the manuscript and guided us towards a more focused treatment of the subject. The linguistic form was checked by the staff of Aakkosto Tmi. We thank the FINNARP crew for assiduous field assistance during Antarctic expeditions. Helena Korkka prepared high-quality thin sections and Bo Johanson, Lassi Pakkanen, and Marjaleena Lehtonen (Geological Survey of Finland) provided invaluable support with the mineral analyses. This work was supported by the Academy of Finland (grant numbers: 210640 to J.H. and 129910 to A.L.) and is a contribution to IPY project “Plates and Gates” (#77; Eol 1264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi S. Heinonen.

Additional information

Editorial handling: L. G. Gwalani.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 39 kb)

Online Resource 2

(PDF 6 kb)

Online Resource 3

(PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinonen, J.S., Luttinen, A.V. Mineral chemical evidence for extremely magnesian subalkaline melts from the Antarctic extension of the Karoo large igneous province. Miner Petrol 99, 201–217 (2010). https://doi.org/10.1007/s00710-010-0115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-010-0115-9

Keywords

Navigation