Skip to main content
Log in

Source of parental melts to carbonatites–critical isotopic constraints

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

An Erratum to this article was published on 09 June 2010

Abstract

The restriction of most carbonatites to continental areas raises questions as to whether the parental liquids to carbonatites are generated within the continental lithosphere, or whether they are derived from deeper parts of the mantle with the lithosphere playing a subsidiary, but important, role in trapping volatile-rich melts/fluids. The constraints imposed by both radiogenic and stable isotopic data from carbonatites world-wide are consistent with a sub-lithospheric source for the parental melts, associated with either asthenospheric ‘upwellings’ or more deep-seated, plume-related activity. Crucial evidences that support the generation of carbonated melts from sub-lithospheric mantle are: the petrogenetic and temporal association of carbonatites with large igneous provinces (LIPs; e.g., Deccan, Parana), carbonatites with primitive noble gas isotopic signatures, radiogenic isotope ratios similar to OIBs (i.e. involving HIMU, EM1 and FOZO mantle components), and the uniform, time-integrated Rb/Sr and Sm/Nd development lines for Sr and Nd isotopic data for carbonatites from the Superior Province, Canada, and the Kola Peninsula, Russia. Such findings are difficult to reconcile with a lithospheric origin. Even if a metasomatized lithospheric mantle is considered to be the sole source of carbonated melts, an unknown mantle process is required, large enough to generate widespread, synchronous metasomatism spanning regions in excess of 1 × 106 km2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aulbach S, Rudnick RL, McDonough WF (2008) Li-Sr-Nd isotope signatures of the plume and cratonic lithospheric mantle beneath the margin of the rifted Tanzanian craton (Labait). Contr Miner Petrol 155:79–92

    Article  Google Scholar 

  • Bailey DK (1993a) Carbonate magmas. J Geol Soc London 150:637–651

    Article  Google Scholar 

  • Bailey DK (1993b) Petrogenetic implications of the timing of alkaline, carbonatite, and kimberlite igneous activity in Africa. South African J Geol 96:67–74

    Google Scholar 

  • Bailey DK, Woolley AR (2005) Repeated synchronous magmatism within Africa: timing, magnetic reversals, and global tectonics. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms, Geological Society of America Special Paper 388:365-377

  • Barker DS (1996) Consequences of recycled carbon in carbonatites. Can Mineral 34:373–387

    Google Scholar 

  • Basu S, Murty SVS (2006) Noble gases in carbonatites of Sung Valley and Ambadongar: implications for trapped components. Chem Geol 234:236–250

    Article  Google Scholar 

  • Bell K (2001) Carbonatites: relationships to mantle plume activity. In: Ernst R, Buchan KL (eds) Mantle plumes: their identification through time. Geol Soc Am Spec Paper 352, pp.267-290

  • Bell K (2005) Carbonatites. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of Geology. Elsevier, Amsterdam, pp 217–233

    Chapter  Google Scholar 

  • Bell K, Blenkinsop J (1987) Archean depleted mantle-evidence from Nd and Sr initial isotope ratios of carbonatites. Geochim Cosmochim Acta 51:291–298

    Article  Google Scholar 

  • Bell K, Blenkinsop J, Cole TJS, Menagh DP (1982) Evidence from Sr isotopes for long-lived heterogeneities in the upper mantle. Nature 298:251–253

    Article  Google Scholar 

  • Bell K, Dawson JB (1995) Nd and Sr isotope systematics of the active carbonatite volcano, Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: IAVCEI Proceedings in Volcanology 4. Springer-Verlag, Berlin, pp 100–112

    Google Scholar 

  • Bell K, Rukhlov AS (2004) Carbonatites from the Kola Alkaline Province: origin, evolution and source characteristics. In: Zaitsev A, Wall F (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, Miner Soc Series 10. pp, London, pp 421–455

    Google Scholar 

  • Bell K, Simonetti A (1996) Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. J Petrol 37:1321–1339

    Article  Google Scholar 

  • Bell K, Tilton GR (2001) Nd, Pb and Sr isotopic compositions of east African carbonatites: evidence for mantle mixing and plume inhomogeneity. J Petrol 42:1927–1945

    Article  Google Scholar 

  • Bell K, Tilton GR (2002) Probing the mantle: the story from carbonatites. EOS, Amer Geophys Union 83:273 276-277

    Google Scholar 

  • Bizzarro M, Simonetti A, Stevenson RK, David J (2002) Hf isotope evidence for a hidden mantle reservoir. Geology 30:771–774

    Article  Google Scholar 

  • Bonadiman C, Beccaluva L, Coltorti M, Siena F (2005) Kimberlite-like metasomatism and 'garnet signature' in spinel-peridotite xenoliths from Sal, Cape Verde Archipelago: relics of a subcontinental mantle domain within the Atlantic oceanic lithosphere. J of Petrol 46:2465–2493

    Article  Google Scholar 

  • Burke K, Khan S (2006) Geoinformatic approach to global nepheline syenite and carbonatites distribution: testing a Wilson cycle model. Geosphere 2:53–60

    Article  Google Scholar 

  • Choukroun M, O'Reilly SY, Griffin WL, Pearson NJ, Dawson JB (2005) Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle. Geology 33:45–48

    Article  Google Scholar 

  • Cohen RS, O’Nions RK, Dawson JB (1984) Isotope geochemistry of xenoliths from East Africa: implications for development of mantle reservoirs and their interaction. Earth Planet Sci Lett 68:209–220

    Article  Google Scholar 

  • Comin-Chiaramonti P, Gomes CB, Cenzi P, Speziale S (2005) Carbonatites from southeastern Brazil: a model for the carbon and oxygen isotope variations. In: Comin-Chiaromonti P, Gomes CB (eds) Mesozoic to Cenozoic alkaline magmatism in the Brazilian platform. Edusp. Fapest, Brazil, pp 629–649

    Google Scholar 

  • Dalou C, Koga KT, Hammouda T, Poitrasson F (2009) Trace element partitioning between carbonatitic melts and mantle transition zone minerals: Implications for the source of carbonatites. Geochim Cosmochim Acta 73:239–255

    Article  Google Scholar 

  • Dalton JA, Presnall DC (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contrib Miner Petrol 131:123–135

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2006) Melting in the Earth's deep upper mantle caused by carbon dioxide. Nature 440:659–662

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Dellas N (2005) The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Miner Petrol 149:288–305

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Withers AW (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite. Earth Planet Sci Lett 227:73–85

    Article  Google Scholar 

  • Dauphas N, Marty B (1999) Heavy nitrogen in carbonatites of the Kola Peninsula: a possible signature of the deep mantle. Science 286:2488–2490

    Article  Google Scholar 

  • Deines P (1989) Stable isotope compositions in carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 278–300

    Google Scholar 

  • Dunworth EA, Bell K (2001) The Turiy Massif, Kola Peninsula, Russia: isotopic and geochemical evidence for multi-source evolution. J Petrol 42:377–405

    Article  Google Scholar 

  • Erlank AJ, Waters FG, Hawkesworth CJ, Haggerty SE, Allsopp HE, Richard RS, Menzies MA (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In: Menzies MA, Hawkesworth CJ (eds) Mantle Metasomatism. Academic Press, London, pp 221–311

    Google Scholar 

  • Ernst RE, Buchan KL (2001) Mantle plumes: their identification through time. Geol Soc Am Spec Pap 352:593

    Google Scholar 

  • Falloon TJ, Green DH (1989) The solidus of carbonated, fertile periodite. Earth Planetary Sci Lett 94:364–370

    Article  Google Scholar 

  • Fischer TP, Burnard P, Marty B, Hilton DR, Füri E, Palhol F, Sharp ZD, Mangasini F (2009) Upper mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature 459:77–80

    Article  Google Scholar 

  • Foulger GR, Natland JH, Presnall DC, Anderson DL (2005) Plates, plumes and paradigms. Geol Soc Amer Special Paper 388:1–881

    Google Scholar 

  • Gaillard F, Malki M, Iacono-Marziano G, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322:1363–1365

    Article  Google Scholar 

  • Gerlach DC, Cliff RA, Davies GR, Norry M, Hodgson N (1988) Magma sources of the Cape Verdes archipelago: isotopic and trace element constraints. Geochim. et Cosmochim Acta 52:2979–2992

    Article  Google Scholar 

  • Haggerty SE (1994) Superkimberlites: a geodynamic diamond window to the Earth's core. Earth Planet Sci Lett 122:57–69

    Article  Google Scholar 

  • Hammouda T (2003) High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett 214:357–368

    Article  Google Scholar 

  • Harmer RE, Lee CA, Eglington BM (1998) A deep mantle source for carbonatite magmatism: evidence from the nephelinites and carbonatites of the Buhera district, SE Zimbabwe. Earth Planet Sci Lett 150:131–142

    Article  Google Scholar 

  • Hart SR (1988) Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett 90:273–296

    Article  Google Scholar 

  • Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment: isotopic evidence. Science 256:517–520

    Article  Google Scholar 

  • Hoernle KA, Tilton GR (1991) Sr-Nd-Pb isotope data for Fuerteventura (Canary Islands) basal complex and subaerial volcanics: applications to magma genesis and evolution. Schweiz Miner Petrograph Mitteil 71:3–18

    Google Scholar 

  • Hoernle KA, Tilton GR, Le Bas MJ, Duggen S, Garbe-Schonberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Miner Petrol 142:520–542

    Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. European J Miner 12:543–570

    Google Scholar 

  • Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63

    Article  Google Scholar 

  • Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite Volcanism: IAVCEI Proceedings in Volcanology 4. Springer-Verlag, Berlin, pp 113–123

    Google Scholar 

  • Kevin G, Ingrin J, Lorand JP, Dumas P (2007) Water partitioning between mantle minerals from peridotite xenoliths. Contr Miner Petrol 154:15–34

    Article  Google Scholar 

  • Kogarko LN (2006) Enriched mantle reservoirs are the source of alkaline magmatism. In: Vladykin NV (ed) Deep-seated magmatism, its sources and plumes. Proceedings of the VI International Workshop, Mirny. Publishing House of the Inst. of Geography SB RAS, pp 46–58

  • Kogarko LN, Kurat G, Ntaflos T (2001) Carbonate metasomatism of the oceanic mantle beneath Fernando de Noronha Island, Brazil. Contr Miner Petrol 140:577–587

    Google Scholar 

  • Kramm U (1993) Mantle components of carbonatites from the Kola alkaline province, Russia and Finland–A Nd-Sr study. European J Miner 5:985–989

    Google Scholar 

  • Larsen LM, Rex DC (1992) A review of the 2500 Ma span of alkaline-ultramafic, potassic and carbonatitic magmatism in West Greenland. Lithos 28:367–402

    Article  Google Scholar 

  • Lentz DR (1999) Carbonatite genesis: a re-examination of the role of intrusion-related pneumatolytic skarn processes in limestone melting. Geology 27:335–338

    Article  Google Scholar 

  • Lloyd FE, Bailey DK (1975) Light element metasomatism of the continental mantle: the evidence and the consequences. Phys Chem Earth 9:389–416

    Article  Google Scholar 

  • Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65

    Article  Google Scholar 

  • Luth RW (2004) Mantle volatiles–distribution and consequences. In: Carlson RW (ed) The mantle and core volume 2 treatise on geochemistry. Elsevier-Pergamon, Oxford, pp 319–361

    Google Scholar 

  • Marty B, Tolstikhin I, Kamensky IL, Nivin V, Balaganskaya E, Zimmerman J-L (1998) Plume-derived rare gases in 380 Ma carbonatites from the Kola region (Russia) and the argon isotopic composition in the deep mantle. Earth Planet Sci Lett 164:179–192

    Article  Google Scholar 

  • Meen JK (1987) Mantle metasomatism and carbonatites: An experimental study of a complex relationship. In Morris EM, Pasteris, JD (eds) Mantle metasomatism and alkaline magmatism. Geol Soc Am Spec Paper 215 pp 91-100

  • Meen JK, Ayers JC, Fregeau EJ (1989) A model of mantle metasomatism by carbonate alkaline melts: trace-element and isotopic compositons of mantle source regions of carbonatite and other continental igneous rocks. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 464–499

    Google Scholar 

  • Menzies MA, Rogers N, Tindle A, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In: Menzies MA, Hawkesworth CJ (eds) Mantle Metasomatism. Academic Press, London, pp 313–361

    Google Scholar 

  • Moine BN, Grégoire M, O'Reilly SY, Delpech G, Sheppard SMF, Lorand JP, Renac C, Giret A, Cottin JY (2004) Carbonatite melt in ocean upper mantle beneath the Kerguelen Archipelago. Lithos 75:239–252

    Article  Google Scholar 

  • Mysen BO (1978) Experimental determination of crystal-vapour partition coefficients for rare earth elements at 30 kbar pressure. Carnegie Institute of Washington Yearbook 73:255–258

    Google Scholar 

  • Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52:1–17

    Article  Google Scholar 

  • Olafsson M, Eggler DH (1983) Phase relations of of amphibole, amphibole-carbonate, and phlogoipite-carbonate peridotite: petrologic constraints on the asthenosphere. Earth Planet Sci Lett 64:305–315

    Article  Google Scholar 

  • Paslick C, Halliday A, James D, Dawson JB (1995) Enrichment of the continental lithosphere by OIB melts: isotopic evidence from the volcanic province of northern Tanzania. Earth Planet Sci Lett 130:109–126

    Article  Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Article  Google Scholar 

  • Sasada T, Hiyagon H, Bell K, Ebihara M (1997) Mantle-derived noble gases in carbonatites. Geochim Cosmochim Acta 61:4219–4228

    Article  Google Scholar 

  • Simonetti A, Bell K (1993) Isotopic disequilibrium in clinopyroxenes from nephelinitic lavas, Napak volcano, eastern Uganda. Geology 21:243–246

    Article  Google Scholar 

  • Simonetti A, Bell K (1994) Nd, Pb and Sr isotopic data from the Napak nephelinite-carbonatite centre, eastern Uganda: an example of open-system crystal fractionation. Contrib Miner Petrol 115:356–366

    Article  Google Scholar 

  • Simonetti A, Bell K, Viladkar SG (1995) Isotopic data from the Amba Dongar carbonatite complex, west-central India: evidence for an enriched mantle source. Chem Geol 122:185–198

    Article  Google Scholar 

  • Simonetti A, Goldstein SL, Schmidberger SS, Viladkar SG (1998) Geochemical and Nd, Pb, and Sr isotope data from Deccan alkaline complexes-inferences for mantle sources and plume-lithosphere interaction. J Petrol 39:1847–1864

    Article  Google Scholar 

  • Sleep NH (1990) Hotspots and mantle plumes: some phenomenology. J. Geophys Res 95:6715–6736

    Article  Google Scholar 

  • Sleep NH (2006) Mantle plumes from top to bottom. Earth Sci Rev 77:231–271

    Article  Google Scholar 

  • Sleep NH, Zahnle K (2001) Carbon dioxide cycling and implications for the climate on ancient Earth. J Geophys Res 106:1373–1399

    Article  Google Scholar 

  • Stoppa F (2007) CO2 magmatism in Italy: from deep carbon to carbonatite volcanism. In: Vladykin NV (ed) Alkaline magmatism, its sources and plumes. Proceedings of the VII International Workshop, Naples, Italy. Publishing House of the Inst. of Geography SB RAS, pp 109-126

  • Sweeney RJ, Green DH, Sie SH (1992) Trace and minor element partitioning between garnet and amphibole and carbonatitic melt. Earth Planet Sci Lett 113:1–14

    Article  Google Scholar 

  • Tappe S, Foley SF, Stracke A, Romer RL, Kjarsgaard BA, Heaman LM, Joyce N (2007) Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr-Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet Sci Lett 256:433–454

    Article  Google Scholar 

  • Thomassot E, Cartigny P, Harris JW, Viljoen KS (2007) Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257:362–371

    Article  Google Scholar 

  • Tilton GR, Bell K (1994) Sr-Nd-Pb isotope relationships in late Archean carbonaties and and alkaline complexes-applications to the geochemical evolution of Archean mantle. Geochim Cosmochim Acta 58:3145–3154

    Article  Google Scholar 

  • Tolstikhin IN, Kamensky IL, Marty B, Nivin VA, Vetrin VR, Balaganskaya EG, Ikorsky SV, Gannibal MA, Weiss D, Verhulst A, Demaiffe D (2002) Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: identification of lower mantle plume component. Geochim Cosmochim Acta 66:881–901

    Article  Google Scholar 

  • van Achterbergh E, Griffin WL, Stiefenhofer J (2001) Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes. Contrib Miner Petrol 141:397–414

    Google Scholar 

  • van Achterbergh E, Griffin WL, Ryan CG, O'Reilly SY, Pearson NJ, Kivi K, Doyle BJ (2002) Subduction signature for quenched carbonatites from the deep lithosphere. Geology 30:743–746

    Article  Google Scholar 

  • Veizer J (1989) Strontium isotopes in seawater through time. Annual Rev Earth Planet Sci 17:141–167

    Article  Google Scholar 

  • Vladykin NV (ed) (2007) Alkaline magmatism, its sources and plumes. Proceedings of the VII International Workshop, Naples, Italy. Publishing House of the Inst. of Geography SB RAS, p 192

  • Wilson M, Patterson R (2001) Intraplate magmatism related to short-wavelength convective instabilities in the upper mantle: evidence from the Tertiary-Quaternary volcanic province of western and central Europe. In: Ernst R, Buchan KL (eds) Mantle plumes: their identification through time. Geol Soc Am Spec Paper 352, pp.37-58

  • Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 1–14

    Google Scholar 

  • Wyllie PJ (1988) Solidus curves, mantle plumes, and magma generation beneath Hawaii. J Geophys Res 93:4171–4181

    Article  Google Scholar 

  • Wyllie PJ (1989) Origin of carbonatites: evidence from phase equilibrium studies. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 500–545

    Google Scholar 

  • Wyllie PJ, Huang WL (1975) Peridotite, kimberlite, and carbonatite explained in the system CaO-MgO-SiO2-CO2. Geology 3:621–624

    Article  Google Scholar 

  • Wyllie PJ, Ryabchikov ID (2000) Volatile components, magmas, and critical vapours in the upwelling mantle. J Petrol 41:1195–1206

    Article  Google Scholar 

  • Yaxley GM, Brey GP (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib Miner Petrol 146:606–619

    Article  Google Scholar 

  • Zhang Y, Zindler A (1993) Distribution and evolution of carbon and nitrogen in Earth. Earth Planet Sci Lett 117:331–345

    Article  Google Scholar 

  • Zindler A, Hart SR (1986) Chemical dynamics. Annual Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank Drs. M. Hirschmann, W.L. Griffin, and an anonymous reviewer for providing constructive comments on an earlier version of the manuscript. We are extremely appreciative for all of the stimulating discussions and interactions over the years with former graduate students, postdoctoral fellows and colleagues at Carleton University, as well as those with other carbonatite researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Simonetti.

Additional information

Editorial handling: L. Gwalani

An erratum to this article can be found at http://dx.doi.org/10.1007/s00710-010-0118-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, K., Simonetti, A. Source of parental melts to carbonatites–critical isotopic constraints. Miner Petrol 98, 77–89 (2010). https://doi.org/10.1007/s00710-009-0059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-009-0059-0

Keywords

Navigation