Skip to main content
Log in

Evolution of mantle melts intruding the lowermost continental crust: constraints from the Monte Capio–Alpe Cevia mafic–ultramafic sequences (Ivrea–Verbano Zone, northern Italy)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

This study presents a new petrological–geochemical data set for the Monte Capio and Alpe Cevia mafic–ultramafic sequences, which are exposed in the deepest levels of the Ivrea–Verbano Zone. These sequences are composed of a peridotite core, with dunite in the center, mantled by minor orthopyroxene-dominated pyroxenites and subordinate hornblende gabbronorites. Amphibole is ubiquitous in the peridotites and the pyroxenites (≤ 15 vol % and 10–40 vol %, respectively), and the peridotite–pyroxenite associations are frequently crosscut by amphibole-rich (45–90 vol %) veins/dykes showing sinuous-to-sharp planar boundaries towards host rocks. The whole-rock Mg# [100 × Mg/(Mg + Fe2+tot)] decreases from the peridotites to the pyroxenites and the crosscutting amphibole-rich dykes (84–81, 80–77, and 73–66, respectively), consistently with the Mg# variations shown by included orthopyroxene, clinopyroxene, and amphibole. Olivine has relatively low forsterite and NiO amounts (84–78 mol % and ≤ 0.14 wt%), and spinel is characterized by low Cr# [100 × Cr/(Cr + Al)] of 7–24. The anorthite content of plagioclase varies from 91 to 88 mol% in plagioclase-bearing pyroxenites to 91–75 mol% in amphibole-rich dykes. The chondrite-normalized REE patterns of amphibole from peridotites and pyroxenites show nearly flat MREE–HREE, no evident Eu anomaly, and LREE that are slightly depleted to slightly enriched with respect to MREE. Amphibole from the amphibole-rich veins/dykes exhibits slight LREE depletion. Whole-rock and amphibole separates show substantial variations in initial Nd–Sr isotopic compositions (e.g., whole-rock εNd calculated at 290 Ma ranges from − 0.3 to − 4.7), irrespective of the rock-type and of incompatible element amphibole compositions. We propose that the Monte Capio–Alpe Cevia dunites formed by cooling of magma lenses that intruded the lowermost continental crust of the Ivrea–Verbano Zone. The chemically evolved signature of the dunites documents earlier crystallization of chemically primitive dunites at lower levels, or olivine fractionation within the dunites during melt ascent. Associated pyroxene-bearing peridotites show a magmatic evolution ruled by reaction of a melt-poor crystal mush with migrating melts relatively rich in SiO2 and H2O, which developed orthopyroxene and amphibole at the expenses of olivine ± clinopyroxene. These migrating melts may be reconciled with those feeding the crosscutting amphibole-rich veins/dykes, whose compositions suggest formation by chemically evolved H2O-rich basalts with an arc-type incompatible trace-element fingerprint. Unraveling the origin of the Monte Capio–Alpe Cevia pyroxenites is hampered by the complex open-system magmatic evolution, which also included assimilation of material released by basement metasediments and/or involvement of primary melt batches with different compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allègre CJ, Turcotte DL (1986) Implications of a two-component marble-cake mantle. Nature 323(6084):123

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2005) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Article  Google Scholar 

  • Barboza SA, Bergantz GW (2000) Metamorphism and anatexis in the mafic complex contact aureole, Ivrea Zone, Northern Italy. J Petrol 41(8):1307–1327

    Article  Google Scholar 

  • Barnes SJ (1986) The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contrib Miner Petrol 93(4):524–531

    Article  Google Scholar 

  • Bertolani M, Loschi Ghittoni AG (1979) La zone a ultrabasiti della Rocca D’Argimonia nelle Prealpi Biellesi. 1. La petrografia. Rend della Soc Ital di Miner e Petrol 35:791–813

    Google Scholar 

  • Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62(7):1175–1193

    Article  Google Scholar 

  • Bodinier JL, Garrido CJ, Chanefo I, Bruguier O, Gervilla F (2008) Origin of pyroxenite–peridotite veined mantle by refertilization reactions: evidence from the Ronda peridotite (Southern Spain). J Petrol 49(5):999–1025

    Article  Google Scholar 

  • Boriani A, Giobbi E (2004) Does the basement of western southern Alps display a tilted section through the continental crust? A review and discussion. Period di Mineral 73(2):5–22

    Google Scholar 

  • Boriani A, Burlini L, Sacchi R (1990) The Cossato-Mergozzo-Brissago Line and the Pogallo Line (Southern Alps, Northern Italy) and their relationships with the late-Hercynian magmatic and metamorphic events. Tectonophysics 182(1–2):91–102

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31(6):1353–1378

    Article  Google Scholar 

  • Burg JP, Bodinier JL, Chaudhry S, Hussain S, Dawood H (1998) Infra-arc mantle-crust transition and intra-arc mantle diapirs in the Kohistan Complex (Pakistani Himalaya): petro-structural evidence. Terra Nova Oxf 10(2):74–80

    Article  Google Scholar 

  • Davidson J, Turner S, Plank T (2013) Dy/Dy*: variations arising from mantle sources and petrogenetic processes. J Petrol 54(3):525–537

    Article  Google Scholar 

  • Denyszyn SW, Fiorentini ML, Maas R, Dering G (2018) A bigger tent for CAMP. Geology 46(9):823–826

    Article  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53(2):189–202

    Article  Google Scholar 

  • Ewing TA, Hermann J, Rubatto D (2013) The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea–Verbano Zone, northern Italy). Contrib Miner Petrol 165(4):757–779

    Article  Google Scholar 

  • Ferrario A, Garuti G, Rossi A, Sighinolfi GP (1983) Petrographic and metallogenic outlines of the “La Balma-M. Capio” ultramafic-mafic body (Ivrea–Verbano basic complex, NW Italian Alps). Mineral deposits of the Alps and of the Alpine Epoch in Europe. Springer, Berlin, Heidelberg, pp 28–40

    Chapter  Google Scholar 

  • Fiorentini ML, LaFlamme C, Denyszyn S, Mole D, Maas R, Locmelis M, Caruso S, Bui T-H (2018) Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust. Geochimica et Cosmochimica Acta 223:175–197

    Article  Google Scholar 

  • Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG (2012) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14(3):489–518

    Article  Google Scholar 

  • Galli A, Grassi D, Sartori G, Gianola O, Burg JP, Schmidt MW (2019) Jurassic carbonatite and alkaline magmatism in the Ivrea zone (European Alps) related to the breakup of Pangea. Geology 47(3):199–202

    Article  Google Scholar 

  • Garuti G, Bea F, Zaccarini F, Montero P (2001) Age, geochemistry and petrogenesis of the ultramafic pipes in the Ivrea Zone, NW Italy. JPetrol 42(2):433–457

    Google Scholar 

  • Grant TB, Harlov DE, Rhede D (2016) Experimental formation of pyroxenite veins by reactions between olivine and Si, Al, Ca, Na, and Cl-rich fluids at 800 °C and 800 MPa: implications for fluid metasomatism in the mantle wedge. Am Miner 101(4):808–818

    Article  Google Scholar 

  • Green T, Blundy J, Adam J, Yaxley G (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200 °C. Lithos 53:165–187

    Article  Google Scholar 

  • Gregoire M, Mattielli N, Nicollet C, Cottin JY, Leyrit H, Weis D, Shimizu N, Giret A (1994) Oceanic mafic granulite xenoliths from the Kerguelen archipelago. Nature 367(6461):360

    Article  Google Scholar 

  • Guergouz C, Martin L, Vanderhaeghe O, Thébaud N, Fiorentini M (2018) Zircon and monazite petrochronologic record of prolonged amphibolite to granulite facies metamorphism in the Ivrea–Verbano and Strona-Ceneri Zones, NW Italy. Lithos 308:1–18

    Article  Google Scholar 

  • Hacker BR, Mehl L, Kelemen PB, Rioux M, Behn MD, Luffi P (2008) Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry. J Geophys Res Solid Earth 113:B03204

    Article  Google Scholar 

  • Hamada M, Fujii T (2007) H2O-rich island arc low-K tholeiite magma inferred from Ca-rich plagioclase-melt inclusion equilibria. Geochem J 41(6):437–461

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Mostefaoui S, Hoppe P (2005) Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge: a SIMS and NanoSIMS study. Contrib Miner Petrol 150(5):486–504

    Article  Google Scholar 

  • Helmy HM, El-Rahman YMA, Yoshikawa M, Shibata T, Arai S, Tamura A, Kagami H (2014) Petrology and Sm–Nd dating of the Genina Gharbia Alaskan-type complex (Egypt): insights into deep levels of Neoproterozoic island arcs. Lithos 198:263–280

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Miner Petrol 98(4):455–489

    Article  Google Scholar 

  • Himmelberg GR, Loney RA (1995) Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska, vol 56. US Government Printing Office, Washington, DC

    Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Miner Petrol 116(4):433–447

    Article  Google Scholar 

  • Irvine TN (1974) Petrology of the Duke Island ultramafic complex, southeastern Alaska, vol 138. Geological Society of America, Boulder

    Google Scholar 

  • Jackson MD, Blundy J, Sparks RSJ (2018) Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust. Nature 564(7736):405

    Article  Google Scholar 

  • Jagoutz O, Müntener O, Burg JP, Ulmer P, Jagoutz E (2006) Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth Planet Sci Lett 242(3–4):320–342

    Article  Google Scholar 

  • Jagoutz O, Müntener O, Ulmer P, Pettke T, Burg JP, Dawood H, Hussain S (2007) Petrology and mineral chemistry of lower crustal intrusions: the Chilas Complex, Kohistan (NW Pakistan). J Petrol 48(10):1895–1953

    Article  Google Scholar 

  • Jagoutz O, Müntener O, Schmidt MW, Burg JP (2011) The roles of flux-and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet Sci Lett 303(1–2):25–36

    Article  Google Scholar 

  • Jeffries TE, Jackson SE, Longerich HP (1998) Application of a frequency quintupled Nd: YAG source (λ = 213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals. J Anal At Spectrom 13(9):935–940

    Article  Google Scholar 

  • Jull M, Kelemen PÁ (2001) On the conditions for lower crustal convective instability. J Geophys Res Solid Earth 106(B4):6423–6446

    Article  Google Scholar 

  • Kelemen PB (1990) Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J Petrol 31(1):51–98

    Article  Google Scholar 

  • Kelemen PB, Shimizu N, Salters VJ (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375(6534):747

    Article  Google Scholar 

  • Kelemen PB, Hanghøj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treat Geochem 3:659

    Google Scholar 

  • Klötzli US, Sinigoi S, Quick JE, Demarchi G, Tassinari CC, Sato K, Günes Z (2014) Duration of igneous activity in the Sesia Magmatic System and implications for high-temperature metamorphism in the Ivrea–Verbano deep crust. Lithos 206:19–33

    Article  Google Scholar 

  • Kornprobst J, Piboule M, Roden M, Tabit A (1990) Corundum-bearing garnet clinopyroxenites at Beni Bousera (Morocco): original plagioclase-rich gabbros recrystallized at depth within the mantle? J Petrol 31(3):717–745

    Article  Google Scholar 

  • Kunz BE, White RW (2019) Phase equilibrium modelling of the amphibolite to granulite facies transition in metabasic rocks (Ivrea Zone, NW Italy). J Metamorph Geol 37:935–950

    Article  Google Scholar 

  • Kunz BE, Johnson TE, White RW, Redler C (2014) Partial melting of metabasic rocks in Val Strona di Omegna, Ivrea Zone, northern Italy. Lithos 190:1–12

    Article  Google Scholar 

  • Locmelis M, Fiorentini ML, Rushmer T, Arevalo R Jr, Adam J, Denyszyn SW (2016) Sulfur and metal fertilization of the lower continental crust. Lithos 244:74–93

    Article  Google Scholar 

  • Loucks RR (1996) A precise olivine-augite Mg–Fe-exchange geothermometer. Contrib Miner Petrol 125(2–3):140–150

    Article  Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J Geophys Res Solid Earth 112:B03211

  • Mazzucchelli M, Zanetti A, Rivalenti G, Vannucci R, Correia CT, Tassinari CCG (2010) Age and geochemistry of mantle peridotites and diorite dykes from the Baldissero body: insights into the Paleozoic-Mesozoic evolution of the Southern Alps. Lithos 119(3–4):485–500

    Article  Google Scholar 

  • Montanini A, Tribuzio R (2001) Gabbro-derived granulites from the Northern Apennines (Italy): evidence for lower-crustal emplacement of tholeiitic liquids in post-Variscan times. J Petrol 42(12):2259–2277

    Article  Google Scholar 

  • Montanini A, Tribuzio R (2015) Evolution of recycled crust within the mantle: constraints from the garnet pyroxenites of the External Ligurian ophiolites (northern Apennines, Italy). Geology 43(10):911–914

    Article  Google Scholar 

  • Müntener O, Ulmer P (2006) Experimentally derived high‐pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys Res Lett 33:L21308

    Article  Google Scholar 

  • Müntener O, Kelemen PB, Grove TJ (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Miner Petrol 141:643–658

    Article  Google Scholar 

  • Nandedkar RH, Ulmer P, Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Miner Petrol 167(6):1015

    Article  Google Scholar 

  • Nandedkar RH, Hürlimann N, Ulmer P, Müntener O (2016) Amphibole–melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. Contrib Miner Petrol 171(8–9):71

    Article  Google Scholar 

  • Niida K (1997) Mineralogy of MARK peridotites: replacement through magma channeling examined from Hole 920D, MARK area. In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Proceedings of the ocean drilling program, scientific results, vol 153, pp 265–275

  • Obata M, Banno S, Mori T (1974) The iron˗magnesium partitioning between naturally occurring coexisting olivine and Ca˗rich clinopyroxene: an application of the simple mixture model to olivine solid solution. Bulletin de Minéralogie 97(2):101–107

    Google Scholar 

  • Panjasawatwong Y, Danyushevsky LV, Crawford AJ, Harris KL (1995) An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contrib Miner Petrol 118(4):420–432

    Article  Google Scholar 

  • Peressini G, Quick JE, Sinigoi S, Hofmann AW, Fanning M (2007) Duration of a large mafic intrusion and heat transfer in the lower crust: a SHRIMP U-Pb zircon study in the Ivrea–Verbano Zone (Western Alps, Italy). J Petrol 48(6):1185–1218

    Article  Google Scholar 

  • Pilet S, Ulmer P, Villiger S (2010) Liquid line of descent of a basanitic liquid at 1.5 GPa: constraints on the formation of metasomatic veins. Contrib Miner Petrol 159(5):621–643

    Article  Google Scholar 

  • Polat A, Fryer BJ, Samson IM, Weisener C, Appel PW, Frei R, Windley BF (2012) Geochemistry of ultramafic rocks and hornblendite veins in the Fiskenæsset layered anorthosite complex, SW Greenland: evidence for hydrous upper mantle in the Archean. Precambr Res 214:124–153

    Article  Google Scholar 

  • Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Miner 101(4):841–858

    Article  Google Scholar 

  • Quick JE, Sinigoi S, Mayer A (1994) Emplacement dynamics of a large mafic intrusion in the lower crust, Ivrea–Verbano Zone, northern Italy. J Geophys Res Solid Earth 99(B11):21559–21573

    Article  Google Scholar 

  • Quick JE, Sinigoi S, Mayer A (1995) Emplacement of mantle peridotite in the lower continental crust, Ivrea–Verbano zone, northwest Italy. Geology 23(8):739–742

    Article  Google Scholar 

  • Quick JE, Sinigoi S, Snoke AW, Kalakay TJ, Mayer A, Peressini G (2003) Geologic map of the Southern Ivrea Verbano Zone, Northwestern Italy. Pamphlet to accompany Geologic Investigations Series Map I–2776

  • Rampone E, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L (1993) Subsolidus reactions monitored by trace element partitioning: the spinel-to plagioclase-facies transition in mantle peridotites. Contrib Miner Petrol 115(1):1–17

    Article  Google Scholar 

  • Redler C, Johnson TE, White RW, Kunz BE (2012) Phase equilibrium constraints on a deep crustal metamorphic field gradient: metapelitic rocks from the Ivrea Zone (NW Italy). J Metamorph Geol 30(3):235–254

    Article  Google Scholar 

  • Redler C, White RW, Johnson TE (2013) Migmatites in the Ivrea Zone (NW Italy): constraints on partial melting and melt loss in metasedimentary rocks from Val Strona di Omegna. Lithos 175:40–53

    Article  Google Scholar 

  • Roeder PL, Emslie R (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29(4):275–289

    Article  Google Scholar 

  • Rutter EH, Brodie KH, Evans PJ (1993) Structural geometry, lower crustal magmatic underplating and lithospheric stretching in the Ivrea–Verbano zone, northern Italy. J Struct Geol 15(3–5):647–662

    Article  Google Scholar 

  • Schaltegger U, Ulianov A, Müntener O, Ovtcharova M, Peytcheva I, Vonlanthen P, Vennemann T, Antognini M, Girlanda F (2015) Megacrystic zircon with planar fractures in miaskite-type nepheline pegmatites formed at high pressures in the lower crust (Ivrea Zone, southern Alps, Switzerland). Am Miner 100(1):83–94

    Article  Google Scholar 

  • Schmid SM, Kissling E, Diehl T, van Hinsbergen DJ, Molli G (2017) Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps-Apennines orogenic system. Swiss J Geosci 110(2):581–612

    Article  Google Scholar 

  • Schnetger B (1994) Partial melting during the evolution of the amphibolite-to granulite-facies gneisses of the Ivrea Zone, northern Italy. Chem Geol 113(1–2):71–101

    Article  Google Scholar 

  • Shimizu K, Liang Y, Sun C, Jackson CR, Saal AE (2017) Parameterized lattice strain models for REE partitioning between amphibole and silicate melt. Am Mineral J Earth Planet Mater 102(11):2254–2267

    Google Scholar 

  • Sinigoi S, Quick JE, Mayer A, Budahn J (1996) Influence of stretching and density contrasts on the chemical evolution of continental magmas: an example from the Ivrea–Verbano Zone. Contrib Miner Petrol 123(3):238–250

    Article  Google Scholar 

  • Sinigoi S, Quick JE, Demarchi G, Klötzli U (2011) The role of crustal fertility in the generation of large silicic magmatic systems triggered by intrusion of mantle magma in the deep crust. Contrib Miner Petrol 162(4):691–707

    Article  Google Scholar 

  • Sinigoi S, Quick JE, Demarchi G, Klötzli US (2016) Production of hybrid granitic magma at the advancing front of basaltic underplating: inferences from the Sesia Magmatic System (south-western Alps, Italy). Lithos 252:109–122

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Miner Petrol 113(2):143–166

    Article  Google Scholar 

  • Spandler C, O’Neill HSC (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300 °C with some geochemical implications. Contrib Miner Petrol 159(6):791–818

    Article  Google Scholar 

  • Streckeisen AL (1967) Classification and nomenclature of igneous rockes. N Jb Miner 107:144–240

    Google Scholar 

  • Sun C, Liang Y (2012) Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition, water, and temperature. Contrib Miner Petrol 163(5):807–823

    Article  Google Scholar 

  • Sun SS, McDonough WS (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67(1):417–452

    Article  Google Scholar 

  • Tiepolo M, Langone A, Morishita T, Yuhara M (2012) On the recycling of amphibole-rich ultramafic intrusive rocks in the arc crust: evidence from Shikanoshima Island (Kyushu, Japan). J Petrol 53(6):1255–1285

    Article  Google Scholar 

  • Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Miner Petrol 149(1):22–39

    Article  Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Miner Petrol 141(6):687–703

    Article  Google Scholar 

  • Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U–Th–Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Miner Petrol 134(4):380–404

    Article  Google Scholar 

  • Voshage H, Hofmann AW, Mazzucchelli M, Rivalenti G, Sinigoi S, Raczek I, Demarchi G (1990) Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating. Nature 347(6295):731

    Article  Google Scholar 

  • Watson BE, Brenan JM, Baker DR (1990) Distribution of fluids in the continental mantle. In: Menzies MA (ed) Continental mantle. Clarendon Press, Oxford, pp 111–125

  • Wells PR (1977) Pyroxene thermometry in simple and complex systems. Contrib Miner Petrol 62(2):129–139

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95(1):185–187

    Article  Google Scholar 

  • Witt-Eickschen G, O’Neill HSC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221(1–2):65–101

    Article  Google Scholar 

  • Zaccarini F, Garuti G, Fiorentini ML, Locmelis M, Kollegger P, Thalhammer OA (2014) Mineralogical hosts of platinum group elements (PGE) and rhenium in the magmatic Ni–Fe–Cu sulfide deposits of the Ivrea Verbano Zone (Italy): an electron microprobe study. Neues Jahrbuch für Mineral Abh J Mineral Geochem 191(2):169–187

    Google Scholar 

  • Zanetti A, Tiepolo M, Oberti R, Vannucci R (2004) Trace-element partitioning in olivine: modelling of a complete data set from a synthetic hydrous basanite melt. Lithos 75(1–2):39–54

    Article  Google Scholar 

  • Zanetti A, Mazzucchelli M, Sinigoi S, Giovanardi T, Peressini G, Fanning M (2013) SHRIMP U-Pb zircon Triassic intrusion age of the Finero mafic complex (Ivrea–Verbano Zone, Western Alps) and its geodynamic implications. J Petrol 54(11):2235–2265

    Article  Google Scholar 

  • Zanetti A, Giovanardi T, Langone A, Tiepolo M, Wu FY, Dallai L, Mazzucchelli M (2016) Origin and age of zircon-bearing chromitite layers from the Finero phlogopite peridotite (Ivrea–Verbano Zone, Western Alps) and geodynamic consequences. Lithos 262:58–74

    Article  Google Scholar 

Download references

Acknowledgements

We thank Oliver Jagoutz for his thorough review and stimulating comments. The ideas in this study benefitted from discussions with Giulio Borghini, Roberto Braga, Alessandra Montanini, and Elisabetta Rampone. Philippe Nonnotte is kindly acknowledged for his help in the clean chemical laboratory. This work was financially supported by Programma di Rilevante Interesse Nazionale (PRIN prot. 2015C5LN35) to R. Tribuzio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tribuzio.

Additional information

Communicated by Timothy L. Grove.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

Location and main petrographic characteristics of selected samples. Mineral modes are visually estimated (vol%); § < 3 vol%, - mineral not present. Mineral abbreviations after Whitney and Evans (2010) and rock nomenclature after Streckeisen (1967). Dunite MC27/1A is physically associated (within the same thin section) to hornblendite vein MC27/1B (XLSX 15 kb)

Online resource 2

Whole rock major element compositions of selected samples (XLSX 12 kb)

Online resource 3

Diagrams showing the whole rock major element variations of selected samples. CaO, SiO2, Al2O3 and TiO2, calculated on anhydrous basis, versus Mg# \([{\text{molar}}\;{\text{Mg}}/({\text{Mg}}\, + \,{\text{Fe}}^{ 2+ }_{\text{tot}} )\, \times \, 100]\). The compositions of dunites and pyroxenites from Monte Capio body reported in Denyszyn et al. (2018) are also plotted (TIFF 32685 kb)

Online resource 4

a) Major element olivine compositions. b) Major element orthopyroxene compositions. c) Major element clinopyroxene compositions. d) Major element amphibole compositions. e) Major element spinel compositions. f) Major element plagioclase compositions (XLSX 46 kb)

Online resource 5

Plot of TiO2 (wt%) versus Cr# [molar Cr/(Cr + Al) × 100] of spinel. Data are averaged per sample; error bars represent the standard deviation of the mean value (TIFF 9609 kb)

Online resource 6

a) Trace element amphibole compositions. b) Trace element clinopyroxene compositions. c) Ni and Co compositions of olivine from dunites and pyroxene-bearing peridotites (XLSX 36 kb)

Online resource 7

Plot of Ni versus Co of olivine from dunites and pyroxene-bearing peridotites. Data are averaged per sample; error bars represent the standard deviation of the mean value (TIFF 10848 kb)

Online resource 8

Nd and Sr isotopic ratios, and Sm–Nd isotopic and Rb–Sr dilution data of selected whole rocks and amphiboles (XLSX 14 kb)

Online resource 9

Temperature estimates obtained through the following geothermometers: (i) Ca-in-Opx (B&K): Ca-in-orthopyroxene by Brey and Kohler (1990), (ii) Opx-Cpx (B&K): orthopyroxene-clinopyroxene by Brey and Kohler (1990), (iii) Opx-Cpx (We): orthopyroxene-clinopyroxene by Wells (1977), (iv) Amp-Pl (H&B): amphibole-plagioclase by Holland and Blundy (2009), and (v) Amp (Pu): amphibole by Putirka (2016, Eq. 6). A confining pressure of 9 kbar was assumed in the calculations, in agreement with pressure estimates obtained from granulite facies metasediments in the study area (Kunz and White, 2019) (XLSX 11 kb)

Online resource 10

Plot of amphibole/clinopyroxene partition ratios for REE (TIFF 8882 kb)

Online resource 11

Amphibole/melt REE partition coefficients calculated on the based on amphibole major element compositions and crystallization temperature conditions, following the method of Shimizu et al. (2017). For the crystallization temperatures, we assumed those calculated following Putirka (2016) (XLSX 14 kb)

Online resource 12

REE compositions of initial melt and of assimilated material, and mineral/melt partition coefficients used in the AFC model (DePaolo, 1981). The initial melt compositions are the average REE compositions of melts in equilibrium with amphibole from hornblende-rich gabbros (see also Fig. 16). The REE compositions of assimilated material correspond to a hypothetical mineral assemblage of 80% olivine and 20% clinopyroxene. These REE compositions were calculated assuming that: (i) olivine included negligible REE, in agreement with unpublished laser ablation ICP mass spectrometry investigations, olivine/melt partition coefficients (e.g., Zanetti et al., 2004; Spandler and O’Neill, 2010), and compositions of olivines from the Ultramafic Pipes of the Ivrea–Verbano Zone (Locmelis et al., 2016), (ii) the average REE compositions of clinopyroxene from plagioclase-free pyroxenites MC8B and MC20/1 (Online resource 6). Amphibole/melt REE partition coefficients are the average of those calculated for peridotites and pyroxenites (Online resource 11), and orthopyroxene/melt REE partition coefficients are taken from Green et al. (2000). The two models depicted in Fig. 19 assume 1:1 crystallization of orthopyroxene and amphibole with decreasing melt mass (F = 0.9 to 0.1) (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berno, D., Tribuzio, R., Zanetti, A. et al. Evolution of mantle melts intruding the lowermost continental crust: constraints from the Monte Capio–Alpe Cevia mafic–ultramafic sequences (Ivrea–Verbano Zone, northern Italy). Contrib Mineral Petrol 175, 2 (2020). https://doi.org/10.1007/s00410-019-1637-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-019-1637-8

Keywords

Navigation