Skip to main content
Log in

Differential drought tolerance among dichondra (Dichondra repens) genotypes in relation to alterations in chlorophyll metabolism, osmotic adjustment, and accumulation of organic metabolites

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Dichondra (Dichondra repens) is an important ground cover plant for landscaping and establishment of green space, but adaptive mechanism of drought tolerance is not well understood in this species. This study was conducted to compare differential response to drought stress among three genotypes (Dr5, Duliujiang, and Dr29) based on integrated physiological, ultrastructural, and metabolic assays. Results showed that drought significantly inhibited photosynthesis, accelerated lipids peroxidation, and also disrupted water balance and cellular metabolism in dichondra plants. Dr5 showed better photochemical efficiency of photosystem II and water homeostasis, less oxidative damage, and more stable chlorophyll metabolism than Duliujinag or Dr29 in response to drought stress. In addition, Dr5 accumulated more amino acids, organic acids, and other metabolites, which was good for maintaining better antioxidant capacity, osmotic homeostasis, and energy metabolism under drought stress. Drought tolerance of Duliujiang was lower than Dr5, but better than Dr29, which could be positively correlated with accumulations of sucrose, maltitol, aconitic acid, isocitric acid, and shikimic acid due to critical roles of these metabolites in osmotic adjustment and metabolic homeostasis. Current findings provide insights into understanding of underlying mechanism of metabolic regulation in dichondra species. Dr5 could be used as an important drought-tolerant resource for cultivation and water-saving breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auler PA, Souza GM, da Silva Engela MRG, do Amaral MN, Rossatto T, da Silva MGZ, Furlan CM, Maserti B, Braga EJB (2021) Stress memory of physiological, biochemical and metabolomic responses in two different rice genotypes under drought stress: the scale matters. Plant Sci 311:110994

    Article  CAS  PubMed  Google Scholar 

  • Barrs H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Blum A (1989) Osmotic adjustment and growth of barley genotypes under drought stress. Crop Sci 29:230–233

    Article  Google Scholar 

  • Bozorov TA, Usmanov RM, Yang H, Hamdullaev SA, Musayev S, Shavkiev J, Nabiev S, Zhang D, Abdullaev AA (2018) Effect of water deficiency on relationships between metabolism, physiology, biomass, and yield of upland cotton (Gossypium hirsutum L.). J Arid Land 10:441–456

    Article  Google Scholar 

  • Chaudhary J, Jain A, Kaur N, Kishore L (2011) Stigmasterol: a comprehensive review. Int J Pharm Sci Res 2:2259–2265

    Google Scholar 

  • Clark AJ, Landolt W, Bucher JB, Strasser RJ (2000) How wind affects the photosynthetic performance of trees: quantified with chlorophyll a fluorescence and open-top chambers. Photosynthetica 38:349–360

    Article  Google Scholar 

  • Costa ML, Civello PM, Chaves AR, Martínez GA (2005) Effect of ethephon and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked chlorophyll bleaching during post-harvest senescence of broccoli (Brassica oleracea L.) at 20°C. Postharvest Biol Technol 35:191–199

    Article  CAS  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58

    Article  ADS  Google Scholar 

  • Dalal VK, Tripathy BC (2012) Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell Environ 35:1685–1703

    Article  CAS  PubMed  Google Scholar 

  • Dar ZM, Malik MA, Aziz MA, Masood A, Dar AR, Hussan SU, Dar ZA (2021) Role of selenium in regulation of plant antioxidants, chlorophyll retention and osmotic adjustment under drought conditions: a review. Int J Plant Soil Sci 33:52–60

    Article  Google Scholar 

  • Dhindsa R, Plumb-Dhindsa P, Thorpe T (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dietz KJ, Zörb C, Geilfus CM (2021) Drought and crop yield. Plant Biol 23:881–893

    Article  PubMed  Google Scholar 

  • Eckhardt U, Grimm B, HöRtensteiner S (2004) Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56:1–14

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal imitations revisited. Ann Bot 89:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Rico-Medina A, Caño-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hanafy RS, Sadak MS (2023) Foliar spray of stigmasterol regulates physiological processes and antioxidant mechanisms to improve yield and quality of sunflower under drought stress. J Soil Sci Plant Nutr 23:2433–2450

    Article  CAS  Google Scholar 

  • Harrington KC, Hartley MJ, Rahman A, James TK (2005) Long term ground cover options for apple orchards. New Zealand Plant Protect 58:164–168

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station Circ 347:1–32

    Google Scholar 

  • Hu H, Liu Y, He B, Chen X, Ma L, Luo Y, Fei X, Wei A (2022) Integrative physiological, transcriptome, and metabolome analysis uncovers the drought responses of two Zanthoxylum bungeanum cultivars. Ind Crops Prod 189:115812

    Article  CAS  Google Scholar 

  • Huang X, Chu G, Wang J, Luo H, Yang Z, Sun L, Rong W, Wang M (2023) Integrated metabolomic and transcriptomic analysis of specialized metabolites and isoflavonoid biosynthesis in Sophora alopecuroides L. under different degrees of drought stress. Ind Crops Prod 197:116595

    Article  CAS  Google Scholar 

  • Jespersen D, Zhang J, Huang B (2016) Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Sci 249:1–12

    Article  CAS  PubMed  Google Scholar 

  • Jespersen D, Yu J, Huang B (2017) Metabolic effects of acibenzolar-S-methyl for improving heat or drought stress in creeping bentgrass. Front Plant Sci 8:1224

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Y (2023) Application of gamma-aminobutyric acid and nitric oxide on turfgrass stress resistance: current knowledge and perspectives. Grass Res 3:1–6

    ADS  Google Scholar 

  • Kaewsuksaeng S, Urano Y, Aiamla-or S, Shigyo M, Yamauchi N (2011) Effect of UV-B irradiation on chlorophyll-degrading enzyme activities and postharvest quality in stored lime (Citrus latifolia Tan.) fruit. Postharvest Biol Technol 61:124–130

    Article  CAS  Google Scholar 

  • Kalozoumis P, Savvas D, Aliferis K, Ntatsi G, Marakis G, Simou E, Tampakaki A, Karapanos I (2021) Impact of plant growth-promoting rhizobacteria inoculation and grafting on tolerance of tomato to combined water and nutrient stress assessed via metabolomics analysis. Front Plant Sci 12:670236

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Kumar Patel M, Kumar N, Bajpai AB, Siddique KHM (2021) Metabolomics and molecular approaches reveal drought stress tolerance in plants. Int J Mol Sci 22:9108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levi A, Paterson AH, Cakmak I, Saranga Y (2011) Metabolite and mineral analyses of cotton near-isogenic lines introgressed with QTLs for productivity and drought-related traits. Physiol Plant 141:265–275

    Article  CAS  PubMed  Google Scholar 

  • Li R, Guo P, Michael B, Stefania G, Salvatore C (2006) Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci China 5:751–757

    Article  CAS  Google Scholar 

  • Li Z, Yu J, Peng Y, Huang B (2017a) Metabolic pathways regulated by abscisic acid, salicylic acid and -aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiol Plant 159:42–58

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang Y, Zhang X, Merewitz E, Peng Y, Ma X, Huang L, Yan Y (2017b) Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. J Proteome Res 16:3039–3052

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Cheng B, Yong B, Liu T, Nie G (2019) Metabolomics and physiological analyses reveal β-sitosterol as an important plant growth regulator inducing tolerance to water stress in white clover. Planta 250:2033–2046

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Cheng B, Zeng W, Zhang X, Peng Y (2020) Proteomic and metabolomic profilings reveal crucial function of γ-aminobutyric acid (GABA) on regulating ionic, water, and metabolic homeostasis in creeping bentgrass under salt stress. J Proteome Res 19:769–780

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Zhou S, Liu W, Zhai Z, Pan Y, Liu C, Chern M, Wang H, Huang M, Zhang Z, Tang J, Du H (2021) A chlorophyll a oxygenase 1 gene ZmCAO1 contributes to grain yield and waterlogging tolerance in maize. J Exp Bot 72:3155–3167

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Li L, Li M, Su L, Lian S, Zhang B, Li X, Ge K, Li L (2018) AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Sci Rep 8:2250

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Longenberger PS, Smith CW, Duke SE, McMichael BL (2009) Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton. Euphytica 166:25–33

    Article  CAS  Google Scholar 

  • Ma X, Zhang J, Burgess P, Rossi S, Huang B (2018) Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Environ Exp Bot 145:1–11

    Article  CAS  Google Scholar 

  • Ma Q, Xu X, Xie Y, Huang T, Wang W, Zhao L, Ma D (2021) Comparative metabolomic analysis of the metabolism pathways under drought stress in alfalfa leaves. Environ Exp Bot 183:104329

    Article  CAS  Google Scholar 

  • Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424

    Article  CAS  PubMed  Google Scholar 

  • Martin-StPaul N, Delzon S, Cochard H (2017) Plant resistance to drought depends on timely stomatal closure. Ecol Lett 20:1437–1447

    Article  PubMed  Google Scholar 

  • Monteoliva MI, Guzzo MC, Posada GA (2021) Breeding for drought tolerance by monitoring chlorophyll content. Gene Technol 10:165

    Google Scholar 

  • Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31:203–216

    Article  PubMed  Google Scholar 

  • Nemat Alla MM, Hassan NM, Budran IG, El-Bastawisy ZM, El-Harary EH (2022) Stigmasterol alleviates the impacts of drought in flax and improves oil yield via modulating efficient antioxidant and ROS homeostasis. Iran J Plant Physiol 12:3973–3984

    Google Scholar 

  • Panda A, Rangani J, Parida AK (2021) Physiological and metabolic adjustments in the xero-halophyte Haloxylon salicornicum conferring drought tolerance. Physiol Plant 172:1189–1211

    Article  CAS  PubMed  Google Scholar 

  • Rapacz M, Wójcik-Jagła M, Fiust A, Kalaji HM, Kościelniak J (2019) Genome-wide associations of chlorophyll fluorescence OJIP transient parameters connected with soil drought response in barley. Front Plant Sci 10:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Rüdiger W (2002) Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynth Res 74:187–193

    Article  PubMed  Google Scholar 

  • Saheri F, Barzin G, Pishkar L, Boojar MMA, Babaeekhou L (2020) Foliar spray of salicylic acid induces physiological and biochemical changes in purslane (Portulaca oleracea L.) under drought stress. Biologia 75:2189–2200

    Article  Google Scholar 

  • Scalabrin E, Radaelli M, Capodaglio G (2016) Simultaneous determination of shikimic acid, salicylic acid and jasmonic acid in wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses. Plant Physiol Biochem 103:53–60

    Article  CAS  PubMed  Google Scholar 

  • Sezgin A, Altuntaş C, Demiralay M, Cinemre S, Terzi R (2019) Exogenous alpha lipoic acid can stimulate photosystem II activity and the gene expressions of carbon fixation and chlorophyll metabolism enzymes in maize seedlings under drought. J Plant Physiol 232:65–73

    Article  CAS  PubMed  Google Scholar 

  • Shaabani SM, Hatamzadeh A, Biglouei MH (2018) Improving drought tolerance of two species of cover crop dichondra and lysimachia by spraying trinexapac-ethyl. Acta Hort 28:163–170

    Article  Google Scholar 

  • Shan D, Wang C, Song H, Bai Y, Zhang H, Hu Z, Wang L, Shi K, Zheng X, Yan T, Sun Y, Zhu Y, Zhang T, Zhou Z, Guo Y, Kong J (2021) The MdMEK2–MdMPK6–MdWRKY17 pathway stabilizes chlorophyll levels by directly regulating MdSUFB in apple under drought stress. Plant J 108:814–828

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Wang J, Xu D, Tao S, Chong S, Yan D, Li Z, Yuan H, Zheng B (2020) Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Sci Total Environ 713:136675

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sinclair TR, Tanner CB, Bennett JM (1984) Water-use efficiency in crop production. Bioscience 34:36–40

    Article  Google Scholar 

  • Stephanie R, Cathryn C, Bo Y, Bingru H (2021) Glutamate acts as a repressor for heat-induced leaf senescence involving chlorophyll degradation and amino acid metabolism in creeping bentgrass. Grass Res 1:1–10

    Article  Google Scholar 

  • Subramani M, Urrea CA, Kalavacharla V (2022) Comparative analysis of untargeted metabolomics in tolerant and sensitive genotypes of common bean (Phaseolus vulgaris L.) seeds exposed to terminal drought stress. Metabolites 12:944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sucre B, Suárez N (2011) Effect of salinity and PEG-induced water stress on water status, gas exchange, solute accumulation, and leaf growth in Ipomoea pes-caprae. Environ Exp Bot 70:192–203

    Article  CAS  Google Scholar 

  • Tan M, Ling Y, Peng Y, Li Z (2022) Evaluation of genetic diversity and drought tolerance among thirty-three dichondra (Dichondra repens) genotypes. Grass Res 2:1–8

    ADS  Google Scholar 

  • Tang M, Li Z, Luo L, Cheng B, Peng Y (2020) Nitric oxide signal, nitrogen metabolism, and water balance affected by γ-aminobutyric acid (GABA) in relation to enhanced tolerance to water stress in creeping bentgrass. Int J Mol Sci 21:7460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotech Lett 30:967–977

    Article  CAS  Google Scholar 

  • Van der Mescht A, De Ronde JA, Rossouw FT (1999) Chlorophyll fluorescence and chlorophyll content as a measure of drought tolerance in potato. S Afr J Sci 95:407–412

    Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wu Y, Mirzaei M, Pascovici D, Chick JM, Atwell BJ, Haynes PA (2016) Quantitative proteomic analysis of two different rice varieties reveals that drought tolerance is correlated with reduced abundance of photosynthetic machinery and increased abundance of ClpD1 protease. J Proteomics 143:73–82

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Han L, Huang B (2011) Membrane fatty acid composition and saturation levels associated with leaf dehydration tolerance and post-drought rehydration in Kentucky bluegrass. Crop Sci 51:273–281

    Article  Google Scholar 

  • Xu J, Cai M, Li J, Chen B, Chen Z, Jia W, Xu Z (2022) Physiological, biochemical and metabolomic mechanisms of mitigation of drought stress-induced tobacco growth inhibition by spermidine. Ind Crops Prod 181:114844

    Article  Google Scholar 

  • Zhang J, Yu G, Wen W, Ma X, Xu B, Huang B (2015) Functional characterization and hormonal regulation of the PHEOPHYTINASE gene LpPPH controlling leaf senescence in perennial ryegrass. J Exp Bot 67:935–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li H, Xu B, Li J, Huang B (2016) Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.). Front Plant Sci 7:1500

  • Zhang J, Kenworthy K, Unruh JB, Erickson J, MacDonald G (2017) Changes of leaf membrane fatty acid composition and saturation level of warm-season turfgrass during drought stress. Crop Sci 57:2843–2851

    Article  CAS  Google Scholar 

  • Zhang C, Chen J, Huang W, Song X, Niu J (2021a) Transcriptomics and metabolomics reveal purine and phenylpropanoid metabolism response to drought stress in Dendrobium sinense, an endemic orchid species in Hainan island. Front Genet 12:692702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Wu J, Sade N, Wu S, Egbaria A, Fernie AR, Yan J, Qin F, Chen W, Brotman Y, Dai M (2021b) Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biol 22:260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Chen J, Feng K, Wang N, Zhang S, Ma H, Ge C, Shen Q, Liu R, Zhao X, Liu S, Du X, Pang C (2021c) Widely targeted metabolomics reveals the different metabolic changes in leaves and roots of two cotton varieties under drought stress. J Agron Crop Sci 207:1041–1049

    Article  CAS  Google Scholar 

  • Zhang J, Li H, Huang X, Xing J, Yao J, Yin T, Jiang J, Wang P, Xu B (2022) STAYGREEN-mediated chlorophyll a catabolism is critical for photosystem stability during heat-induced leaf senescence in perennial ryegrass. Plant Cell Environ 45:1412–1427

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Xu T, Xiao J, Liu S, Mao K, Song L, Yao Y, He X, Feng H (2020a) Responses of water use efficiency to drought in southwest China. Remote Sens 12:199

    Article  ADS  Google Scholar 

  • Zhao S, Zeng W, Li Z, Peng Y (2020b) Mannose regulates water balance, leaf senescence, and genes related to stress tolerance in white clover under osmotic stress. Biol Plant 64:406–416

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Ya’an Yucheng Science and Technology Program (2023QXHZ01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Handling Editor: Néstor Carrillo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 903 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Y., Tan, M., Xi, Y. et al. Differential drought tolerance among dichondra (Dichondra repens) genotypes in relation to alterations in chlorophyll metabolism, osmotic adjustment, and accumulation of organic metabolites. Protoplasma (2024). https://doi.org/10.1007/s00709-024-01943-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00709-024-01943-0

Keywords

Navigation