Skip to main content
Log in

Hemiptera-induced galls of Sapium glandulosum have histological and cytological compartmentalization created with a large amount of carbohydrate

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Gall formation impacts the development of plant species by altering the structure and mobilization of reserves, and the functional and physiological patterns of the host organ. The current study aimed to evaluate the impact generated by the Neolithus fasciatus galling insect (Hemiptera: Triozidae) in Sapium glandulosum leaves (Euphorbiaceae) at the cytological, histological, histochemical, and biochemical levels. Non-galled leaves and galls in the young, mature, and senescent stages were evaluated. The non-galled leaf has a uniseriate epidermis, stomata only on the abaxial side, a dorsiventral mesophyll, and parenchyma cells with thin primary walls containing chloroplasts with plastoglobules. The gall has a parenchymatous compartmentalized cortex. The young and mature galls already have a dense cytoplasm, especially in the inner cells of the cortex, with chloroplasts, mitochondria, Golgi complex, and large and evident nuclei. In senescent galls, there are signs of organelle degradation and cell digestion. Carbohydrates occur in greater amounts in the mature gall, mainly in the starch grain form, while proteins and lipids predominate in non-galled leaves. Secondary metabolites occur mainly in the young gall and may be related to its protection and to the signaling of its development. Sapium glandulosum galls have histological and cytological compartmentalization of the cortex with a large amount of carbohydrates, which supply energy to maintain the development of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author upon request.

References

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls: from chemistry to biology. Garland Science, New York.https://doi.org/10.1201/9780203833476

  • AOAC (1990) Official methods of analysis of the association of official analytical chemists. In: Horwitz W (ed) Method 989.05, 15th edn. Association of Official Analytical Chemists, Arlington

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bragança GPP, Oliveira DC, Isaias RMS (2016) Compartmentalization of metabolites and enzymatic mediation in nutritive cells of Cecidomyiidae galls on Piper arboreum Aubl. (Piperaceae). J Plant Stud 6:11–22. https://doi.org/10.5539/jps.v6n1p11

    Article  CAS  Google Scholar 

  • Bréhélin C, Kessler F, Wijk KJV (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:1360–1385. https://doi.org/10.1016/j.tplants.2007.04.003

    Article  CAS  Google Scholar 

  • Bronner R (1992) The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect induced galls. Oxford University Press, New York, pp 118–140

    Google Scholar 

  • Bryan GW, Zadylak AH, Ehret CF (1967) Photoinduction of plastids and of chlorophyll in a Chlorella mutant. J Cell Sci 12:513–528. https://doi.org/10.1242/jcs.2.4.513

    Article  Google Scholar 

  • Burckhardt D (2005) Biology, ecology, and evolution of gall-inducing psyllids (Hemiptera: Psylloidea). In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods. Science Publishers, New Hampshire, pp 143–158

    Google Scholar 

  • Cardoso RKOA (2016) Fenologia e biologia floral de Sapium glandulosum (L.) Morong 1893 (Euphorbiaceae) e suas interações ecológicas com artrópodes durante período reprodutivo em uma área de Cerrado. https://doi.org/10.14393/ufu.di.2022.5000

  • Carneiro RGS, Burckhardt D, Isaias, RMS (2013) Biology and systematics of gall- inducing triozids (Hemiptera: Psylloidea) associated with Psidium spp. (Myrtaceae). Zootaxa 3620:129–146. https://doi.org/10.11646/zootaxa.3620.1.6.

  • Carneiro RGS, Oliveira DC, Isaias RMS (2014a) Developmental anatomy and immunocytochemistry reveal the neo-ontogenesis of the leaf tissues of Psidium myrtoides (Myrtaceae) towards the globoid galls of Nothotrioza myrtoidis (Triozidae) Plant Cell Rep 33:2093–2106. https://doi.org/10.1007/s00299-014-1683-7

  • Carneiro RGS, Castro AC, Isaias RMS (2014b) Unique histochemical gradients in a photosynthesis-deficient plant gall. S Afr J Bot 92:97–104. https://doi.org/10.1016/j.sajb.2014.02.011

    Article  CAS  Google Scholar 

  • Carneiro RGS, Isaias RMS (2015a) Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking-insects. AoB Plants 7:plv086. https://doi.org/10.1093/aobpla/plv086

  • Carneiro RGS, Isaias RMS (2015b) Cytological cycles and fates in Psidium myrtoides are altered towards new cell metabolism and functionalities by the galling activity of Nothotrioza myrtoidis. Protoplasma 252:637–646. https://doi.org/10.1007/s00709-014-0709-x

    Article  CAS  PubMed  Google Scholar 

  • Castro HG, Ferreira FA, Silva DJH, Mosquim PR (2004) Contribuição ao estudo das plantas medicinais metabolitos secundários. Ed. dos autores, Viçosa

  • Castro AC, Oliveira DC, Moreira ASFP, Isaias RMS (2013) Synchronism between Aspidosperma macrocarpon Mart. (Apocynaceae) resources allocation and the estab- lishment of gall inducer Pseudophacopteron sp. (Hemiptera: Psylloidea). Rev Biol Trop 61:1891–1900

    Article  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. 3rd edn. Jonh Wiley and Son, New Jersey, p 601. https://doi.org/10.1002/0470047380

  • Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2001) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cyclingin heterotrophic cells. Planta 212:250–263. https://doi.org/10.1007/s004250000386

    Article  CAS  PubMed  Google Scholar 

  • Ferreira BG, Álvarez R, Bragança GP et al (2019) Feeding and other gall facets: patterns and determinants in gall structure. Bot Rev 85:78–106. https://doi.org/10.1007/s12229-019-09207-w

    Article  Google Scholar 

  • Formiga AT, Gonçalves SJMR, Soares GLG, Isaias RMS (2009) Relações entre o teor de fenóis totais e o ciclo das galhas de Cecidomyiidae e em Aspidosperma spruceanum Müll. Arg. (Apocynaceae). Acta Bot Bras 23:93–99. https://doi.org/10.1590/S0102-3062009000100012

    Article  Google Scholar 

  • Formiga AT, Oliveira DC et al (2013) The role of pectic composition of cell walls in the determination of the new shape-functional design in galls of Baccharis reticularia (Asteraceae). Protoplasma 250:899–908. https://doi.org/10.1007/s00709-012-0473-8

    Article  CAS  PubMed  Google Scholar 

  • Formiga AT, Silveira FAO, Fernandes GW, Isaias RMS (2015) Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae). Plant Biol 17:512–521. https://doi.org/10.1111/plb.12232

    Article  CAS  PubMed  Google Scholar 

  • Furr M, Mahlberg PG (1981) Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J Nat Prod 44:153–159

    Article  Google Scholar 

  • Gottlieb OR, Kaplan MAC, Borin MRMB (1996) Biodiversidade: Um enfoque químico- biológico do funcionamento da natureza. Universidade Federal do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Guedes LM, Aguilera N, Ferreira BG, Becerra J, Hernández V, Isaias RMS (2018) Anatomical and phenological implications between Schinus polygama (Cav.) (Cabrera) (Anacardiaceae) and the galling insect Calophya rubra (Blanchard) (Hemiptera: Psylloidea). Plant Biol 20:507–515. https://doi.org/10.1111/plb.12696

    Article  CAS  PubMed  Google Scholar 

  • Haiden SA, Hoffmann JH, Cramer MD (2012) Benefits of photosynthesis for insects in galls. Oecologia 170:987–997. https://doi.org/10.1007/s00442-012-2365-1

    Article  CAS  PubMed  Google Scholar 

  • Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall former? Oecologia 113:492–501. https://doi.org/10.1007/s004420050401

    Article  CAS  PubMed  Google Scholar 

  • Hartley SE (1999) Are gall insects large rhizobia? Oikos 84:333–342

    Article  Google Scholar 

  • Isaias RMS, Carneiro RGS, Oliveira DC et al (2013) Illustrated and annotated checklist of Brazilian gall morphotypes. Neotrop Entomol 42:230–239. https://doi.org/10.1007/s13744-013-0115-7

    Article  CAS  PubMed  Google Scholar 

  • Isaias RMS, Coelho DO, Carneiro RGS (2011) Role of Euphalerus ostreoides (Hemiptera: Psylloidea) in manipulating leaflet ontogenesis of Lonchocarpus muehlbergianus (Fabaceae). Botany 89:581–592. https://doi.org/10.1139/b11-048

  • Isaias RMS, Oliveira DC, Carneiro RGS, Kraus JE (2014) Developmental anatomy of galls in the neotropics, arthropods stimuli versus host plant constraints. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. pp 15–34. https://doi.org/10.1007/978-94-017-8783-3_2

  • Isaias RMS, Oliveira DC, Moreira ASFP, Soares GLG, Carneiro RGS (2015) The imbalance of redox homeostasis in arthropod-induced plant galls: mechanisms of stress generation and dissipation. Biochim Biophys Acta 8:1509–1517. https://doi.org/10.1016/j.bbagen.2015.03.007

    Article  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book, New York

    Google Scholar 

  • Kraus JE, Sugiura HC, Cutupri S (1996) Morfologia e ontogenia em galhas entomógenas de Guarea macrophylla subsp. Tuberculata (Meliaceae). Fitopatol Bras 21:349–356

    Google Scholar 

  • Kraus J, Arduin M (1997) Manual básico de métodos em morfologia vegetal. EDUR, Seropédica

  • Kuster VC, Custódio JFC, Moreira ASFP, Isaias RMS, Oliveira DC (2022) Assessing oxidative stress and photosynthetic activity in leaf galls induced by different species of galling insect on Aspidosperma spp. Biologia 77:3441–3454. https://doi.org/10.1007/s11756-022-01167-8

    Article  CAS  Google Scholar 

  • Kuster VC, Rezende CU et al (2019) How galling organisms manipulate the secondary metabolites in the host plant tissues?: A histochemical overview in Neotropical gall systems. In: Mérillon JM, Ramawat K (eds) Springer International Publishing, pp 1–20. https://doi.org/10.1007/978-3-319-96397-6_29.

  • Lev-Yadun S (2003) Stem cells plants are differentiated too. Curr Top Plant Biol 4:93–100

    Google Scholar 

  • Magalhães TA, Oliveira DC, Suzuki AYM, Isaias RMS (2014) Patterns of cell elongation in the determination of the final shape in galls of Baccharopelma dracunculifoliae (Psyllidae) on Baccharis dracunculifolia DC. (Asteraceae). Protoplasma 251:747–753

    Article  PubMed  Google Scholar 

  • Mani MS (1964) Ecology of plant galls. Dr. W. Junk Publishers, The Hague

  • Martini VC, Moreira ASFP, Fuzaro L, Gonçalves LA, Oliveira DC (2020) Pseudophacopteron longicaudatum (Hemiptera) induces intralaminar leaf galls on Aspidosperma tomentosum (Apocynaceae): a qualitative and quantitative structural overview. An Acad Bras Ciênc 92:e20181002. https://doi.org/10.1590/0001-3765202020181002

    Article  CAS  PubMed  Google Scholar 

  • Masuko T, Minami A, Iwasaki N, Majima T, Nishimura SY, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339(1):69–72. https://doi.org/10.1016/j.ab.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Karmakar A, Barik A (2016) Bionomics of Momordica cochinchinensis fed Aulacophora foveicollis (Coleoptera: Chrysomelidae). Proc Zool Soc 70:81–87. https://doi.org/10.1007/s12595-016-0166-y

  • Naves GFS, Kuster VC, Machado M, Santos PD, Martini VC, Oliveira DC (2021) Metabolite investments and stress levels among tissue compartments of Palaeomystella olygophaga (Lepidoptera) galls on Macairea radula (Melastomataceae). Aust J Bot 69:1–17. https://doi.org/10.1071/BT20128

    Article  CAS  Google Scholar 

  • Neto PASP (2005) Plantas medicinais: do popular ao científico. UFAL

  • O’Brien T, Feder N, Mccully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • O’Brien TP, Mccully ME (1981) The study of plant structure: principles and selected methods. Melburne: Termarcarphy PTY Ltd

  • Oliveira DC, Isaias RMS (2010a) Cytological and histochemical gradients induced by a sucking insect in galls of Aspidosperma australe Arg. Muell (Apocynaceae). Plant Sci 178:350–358. https://doi.org/10.1016/j.plantsci.2010.02.002

    Article  CAS  Google Scholar 

  • Oliveira DC, Isaias RMS (2010b) Redifferentiation of leaflet tissues during midrib gall development in Copaifera langsdorffii (Fabaceae). S Afr J Bot 76:239–248. https://doi.org/10.1016/j.sajb.2009.10.011

    Article  Google Scholar 

  • Oliveira DC, Christiano JCS, Soares GLG et al (2006) Reações de defesas químicas e estruturais de Lonchocarpus muehlbergianus Hassl. (Fabaceae) à ação do galhador Euphalerus ostreoides Crawf. (Hemiptera: Psyllidae). Braz J Bot 29:657–667. https://doi.org/10.1590/S0100-84042006000400015

    Article  CAS  Google Scholar 

  • Oliveira DC, Isaias RMS, Moreira ASFP et al (2011) Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis? Plant Sci 180:489–495. https://doi.org/10.1016/j.plantsci.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DC, Magalhães TA, Ferreira BG, Teixeira CT, Formiga AT, Fernandes GW, Isaias RMS (2014) Variation in the degree of pectin methylesterification during the development of Baccharis dracunculifolia kidney-shaped gall. PLoS ONE 9:e94588. https://doi.org/10.1371/journal.pone.0094588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira DC, Moreira AS, Isaias RMS, Martini V, Rezende U (2017) Sink status and photosynthetic rate of the leaflet galls induced by Bystracoccus mataybae (Eriococcidae) on Matayba guianensis (Sapindaceae). Front Plant Sci 8:1249. https://doi.org/10.3389/fpls.2017.01249

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira DC, Isaias RMS, Fernandes GW, Ferreira BG, Carneiro RGS, Fuzaro L (2016) Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J Insect Physiol 84:103–113. https://doi.org/10.1016/j.jinsphys.2015.11.012

  • Oliveira DC, Burckhardt D, Calácio TF (2019) Ceropsylla pouteriae Burckhardt sp. nov. (Hemiptera: Psylloidea: Triozidae), a new species of jumping plant-louse inducing galls on the leaves of Pouteria ramiflora (Mart.) Radlk. (Sapotaceae): taxonomy, gall structure and histochemistry. J Nat Hist 53:31–32. https://doi.org/10.1080/00222933.2019.1676931

  • Peeters PJ (2002) Correlations between leaf structural traits and the densities of herbivorous insects guilds. Biol J Linn Soc 77:43–65. https://doi.org/10.1046/j.1095-8312.2002.00091.x

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta Bioenerg 975:384–394. https://doi.org/10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Queiroz CGS, Mares AA, MG, et al (1998) Chilling-induced changes in membrane fluidity antioxidant enzyme actives in Coffea arabica L. roots. Biol Plant 41:403–413. https://doi.org/10.1023/A:1001802528068

    Article  CAS  Google Scholar 

  • Raman A (2007) Insect-induced plant galls of India: unresolved questions. Curr Sci 92:748–757

    Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Cell 8:1809–1819

    Google Scholar 

  • Rezende UC, Cardoso JCF, Kuster VC et al (2019) How the activity of natural enemies changes the structure and metabolism of the nutritive tissue in galls? Evidence from the Palaeomystella oligophaga (Lepidoptera) Macairea radula (Metastomataceae) system. Protoplasma 256:669–677. https://doi.org/10.1007/s00709-018-1321-2

    Article  CAS  PubMed  Google Scholar 

  • Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect induced galls. Oxford University Press, New York, pp 60–86

    Google Scholar 

  • Rohfritsch O, Anthony M (1992) Strategies on gall induction by two groups of homopterans. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 102–117

    Google Scholar 

  • Rostás M, Maag D, Ikegami M, Inbar M (2013) Gall volatiles defend aphids against a browsing mammal. BMC Evol Biol 13:193. https://doi.org/10.1186/1471-2148-13-193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sass JE (1951) Botanical microtechnique. Iowa State College Press, Ames

    Book  Google Scholar 

  • Soares GLG, Isaias RMS, Gonçalves SJMR, Christiano JCS (2000) Alterações químicas induzidas por coccídeos galhadores (Coccoidea: Brachyscelidae) em folhas de Rollinia laurifolia Schdtl. (Annonaceae). Rev Bras Zoociências 2:103–116

    Google Scholar 

  • Souza SCPM, Kraus JE, Isaias RMS, Neves LJ (2000) Anatomical and ultrastructural aspects of leaf galls in Ficus microcarpa L. F. (Moraceae) induced by Gynaikothrips ficorum Marchal (Thysanoptera). Acta Bot Bras 14:57–69

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Vitor Martini for the support with the statistical analyses.

Funding

The current study was financed in part Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” – Brazil (CAPES)—Finance Code 001—with a scholarship granted to Lorena Moreira Pires Rosa. The authors also thank “Conselho Nacional de Desenvolvimento Científico e Tecnológico”—Brazil (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

LMPR and VCK were responsible for conceptualization and for the experimental design. LMPR and MSS conducted experiments and collected samples and data. RGSC performed plant cell analyses and interpretations. MM performed biochemical analyses and interpretations. VCK was responsible for project coordination and funding acquisition, and also supervised all steps. All authors wrote, revised, and edited the manuscript.

Corresponding author

Correspondence to Vinícius Coelho Kuster.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Dorota Kwiatkowska

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, L.M.P., Silva, M.S., da Silva Carneiro, R.G. et al. Hemiptera-induced galls of Sapium glandulosum have histological and cytological compartmentalization created with a large amount of carbohydrate. Protoplasma 261, 593–606 (2024). https://doi.org/10.1007/s00709-023-01921-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-023-01921-y

Keywords

Navigation