Skip to main content

Advertisement

Log in

Transcriptome analysis reveals differentially expressed genes involved in somatic embryogenesis and podophyllotoxin biosynthesis of Sinopodophyllum hexandrum (Royle) T. S. Ying

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Sinopodophyllum hexandrum (Royle) T. S. Ying, an important source of podophyllotoxin (PTOX), has become a rare and endangered plant because of over-harvesting. Somatic embryogenesis (SE) is the main way of seedling rapid propagation and germplasm enhancement, but the regeneration of S. hexandrum has not been well established, and the PTOX biosynthesis abilities at different SE stages remain unclear. Therefore, it is extremely important to elucidate the SE mechanism of S. hexandrum and clarify the biosynthesis variation of PTOX. In this study, the transcriptomes of S. hexandrum at different SE stages were sequenced, the contents of PTOX and 4'-demethylepipodophyllotoxin were assayed, and the transcript expression patterns were validated by qRT-PCR. The results revealed that plant hormone (such as auxins, abscisic acid, zeatin, and gibberellins) related pathways were significantly enriched among different SE stages, indicating these plant hormones play important roles in SE of S. hexandrum; the expression levels of a series of PTOX biosynthesis related genes as well as PTOX and 4'-demethylepipodophyllotoxin contents were much higher in embryogenic callus stage than in the other stages, suggesting embryogenic callus stage has the best PTOX biosynthesis ability among different SE stages. This study will contribute to germplasm conservation and fast propagation of S. hexandrum, and facilitate the production of PTOX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The RNA-seq raw data have been deposited in NCBI database with the accessions numbers of SAMN29987050, SAMN29987051, SAMN29987052, and SAMN29987053. The other data presented in this study are available on request from the corresponding author.

References

  • Acanda Y, Martínez Ó, Prado MJ, González MV, Rey M (2020) Changes in abscisic acid metabolism in relation to the maturation of grapevine (Vitis vinifera L. cv. Mencia) somatic embryos. BMC Plant Biol 20(1):487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya D, Sinha R, Hazra S, Datta R, Chattopadhyay S (2013) De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple Podophyllum hexandrum. BMC Genomics 14:748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cueno ME, Imai K, Ochiai K, Okamoto T (2012) Cytokinin dehydrogenase differentially regulates cytokinin and indirectly affects hydrogen peroxide accumulation in tomato leaf. J Plant Physiol 169(8):834–838

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Zhu Z, Xian H, Wang H, Chen B, Tang Y, Tang Y, Liang X (2021) Insight into the molecular mechanism of podophyllotoxin derivatives as anticancer drugs. Front Cell Dev Biol 9:709075

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu L (1992) Plant red book of China: rare threatened plant. Science Press, Beijing

    Google Scholar 

  • Giri A, Lakshmi NM (2000) Production of podophyllotoxin from Podophyllum hexandrum: a potential natural product for clinically useful anticancer drugs. Cytotechnology 34:17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Chen Y, Zhu Y (2022) Changes of endogenous hormones during somatic embryogenesis of Sinopodophyllum emodi. Fenzi Zhiwu Yuzhong (Molecular Plant Breeding) 20(24):8264–8271

  • Guo S, Zhu Y, Guan Y (2015a) The research progress of endangered Chinese medicinal herb of Sinopodophyllum Hexandrum (Royle) Ying. Ningxia J Agric For Sci Technol 56(11):77–79

    Google Scholar 

  • Guo S, Zhu Y, Guan Y (2015) Callus induction of different explants of Sinopodophyllum emodi (Wall.) Ying. Chin Agric Sci Bull 31(36):150–155

    Google Scholar 

  • Kharkwal AC, Kushwaha R, Prakash O, Ogra RK, Bhattacharya A, Nagar PK, Ahuja PS (2008) An efficient method of propagation of Podophyllum hexandrum: an endangered medicinal plant of the Western Himalayas under ex situ conditions. J Nat Med 62(2):211–216

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Lim S, Choi YE, Anbazhagan VR (2007) High frequency plant regeneration via somatic embryogenesis in Podophyllum peltatum L. an important medicinal plant for source of anticancer drug. Curr Sci 92:662–666

    CAS  Google Scholar 

  • Kumar P, Padhan J, Kumar A, Chauhan R (2017a) Transcriptomes of Podophyllum hexandrum unravel candidate miRNAs and their association with the biosynthesis of secondary metabolites. J Plant Biochem Biotechnol 27:46–54

    Article  Google Scholar 

  • Kumar P, Jaiswal V, Pal T, Singh J, Chauhan RS (2017) Comparative whole-transcriptome analysis in Podophyllum species identifies key transcription factors contributing to biosynthesis of podophyllotoxin in P. hexandrum. Protoplasma 254(1):217–228

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Singh D, Kumar S (2017) Biotechnological interventions for harnessing podophyllotoxin from plant and fungal species: current status challenges and opportunities for its commercialization. Crit Rev Biotechnol 37(6):739–753

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Singh HR, Jha A, Swarnkar MK, Shankar R, Kumar S (2014) Transcriptome sequencing of rhizome tissue of Sinopodophyllum hexandrum at two temperatures. BMC Genomics 15:871

    Article  PubMed  PubMed Central  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23(7):1647–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalaleo L, Testillano P, Risueño MC, Cusidó RM, Palazon J, Alcazar R, Bonfill M (2018) Effect of in vitro morphogenesis on the production of podophyllotoxin derivatives in callus cultures of Linum album. J Plant Physiol 228:47–58

    Article  CAS  PubMed  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108:18512–18517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Z, Yao T, Zhao W, Li H, Tang Y (2021) Research progress in biosynthesis of podophyllotoxin and its derivatives. Sheng wu gong cheng xue bao = Chin J Biotechnol 37(6):2026–2038

    CAS  Google Scholar 

  • Montero-Córtes M, Sáenz L, Córdova I, Quiroz A, Verdeil JL, Oropeza C (2010) GA3 stimulates the formation and germination of somatic embryos and the expression of a KNOTTED-like homeobox gene of Cocos nucifera (L.). Plant Cell Rep 29(9):1049–59

    Article  PubMed  Google Scholar 

  • Nic-Can, GI, Loyola-Vargas, VM (2016). The role of the auxins during somatic embryogenesis. In: Loyola-Vargas, V, Ochoa-Alejo, N (eds) Somatic Embryogenesis: Fundamental Aspects and Applications. Springer, Cham, pp 171–182

  • Peter H (2020) The current status of research on gibberellin biosynthesis. Plant Cell Physiol 61:1832–1849

    Article  Google Scholar 

  • Rajesh M, Sivanandhan G, Jeyaraj M, Chackravarthy R, Manickavasagam M, Selvaraj N, Ganapathi A (2014a) An efficient in vitro system for somatic embryogenesis and podophyllotoxin production in Podophyllum hexandrum Royle. Protoplasma 251(5):1231–1243

    Article  CAS  PubMed  Google Scholar 

  • Rajesh M, Sivanandhan G, Subramanyam K, Kapildev G, Jaganath B, Kasthurirengan S, Manickavasagam M, Ganapathi A (2014b) Establishment of somatic embryogenesis and podophyllotoxin production in liquid shake cultures of Podophyllum hexandrum Royle. Ind Crops Prod 60:66–74

    Article  CAS  Google Scholar 

  • Shah Z, Gohar UF, Jamshed I, Mushtaq A, Mukhtar H, Zia-Ui-Haq M, Toma SI, Manea R, Moga M, Popovici B (2021) Podophyllotoxin: history, recent advances and future prospects. Biomolecules 11(4):603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem 279:41866–41872

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Flota FA, Monforte-González M, de Lourdes Miranda-Ham M (2016) Application of somatic embryogenesis to secondary metabolite-producing plants. In: Loyola-Vargas V, Ochoa-Alejo N (eds) Somatic Embryogenesis: Fundamental Aspects and Applications. Springer, Cham, pp 455–469

  • Xu Z, Ma S, Hu C, Yang C, Hu Z (1997) The floral biology and its evolutionary significance of Sinopodophyllum hexandrum (Royle) Ying (Berberidaceae). J Wuhan Bot Res 15(3):223–227

    Google Scholar 

  • Ying J, Boufford DE, Brach AR (2011) Flora of China (Vol. 19): Berberidaceae. science press: Beijing

  • Zhang J, Peer WA (2017) Auxin homeostasis: the DAO of catabolism. J Exp Bot 68(12):3145–3154

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31860086).

Author information

Authors and Affiliations

Authors

Contributions

SG and MT designed the experiments. SG, YC, and YZ conducted the experiments. MT analyzed the data. SG and MT prepared the manuscript.

Corresponding authors

Correspondence to Shenghu Guo or Mei Tian.

Ethics declarations

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Sonia Malik

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Chen, Y., Zhu, Y. et al. Transcriptome analysis reveals differentially expressed genes involved in somatic embryogenesis and podophyllotoxin biosynthesis of Sinopodophyllum hexandrum (Royle) T. S. Ying. Protoplasma 260, 1221–1232 (2023). https://doi.org/10.1007/s00709-023-01843-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-023-01843-9

Keywords

Navigation