Skip to main content
Log in

Anther development in Brachiaria brizantha (syn. Urochloa brizantha) and perspective for microspore in vitro culture

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Brachiaria, a genus from the Poaceae family, is largely cultivated as forage in Brazil. Among the most cultivated varieties of Brachiaria spp., B. brizantha cv. Marandu (syn. Urochloa brizantha) is of great agronomical importance due to the large areas cultivated with this species. This cultivar is apomictic and tetraploid. Sexual diploid genotype is available for this species. The difference in levels of ploidy among sexual and apomictic plants contributes to hindering Brachiaria breeding programs. The induction of haploids and double haploids is of great interest for the generation of new genotypes with potential use in intraspecific crosses. A key factor for the success of this technique is identifying adequate microspore developmental stages for efficient embryogenesis induction. Knowledge of the morphological changes during microsporogenesis and microgametogenesis and sporophytic tissues composing the anther is critical for identifying the stages in which microspores present a higher potential for embryogenic callus and somatic embryo through in vitro culture. In this work, morphological markers were associated with anther and pollen grain developmental stages, through histological analysis. Anther development was divided into 11 stages using morphological and cytological characteristics, from anther with archesporial cells to anther dehiscence. The morphological characteristics of each stage are presented. In addition, the response of stage 8 anthers to in vitro culture indicates microspores initiating somatic embryogenic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albrecht C, Russinova E, Hecht V, Baaijens E, De Vries S (2005) The Arabidopsis thaliana somatic embryogenesis receptor-like kinases1 and 2 Control Male Sporogenesis. Plant Cell 17:3337–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves ER, Carneiro VTC, Araujo ACG (2001) Direct evidence of pseudogamy in an apomictic Brachiaria brizantha (Poaceae). Sex Plant Rep 14:207–212. https://doi.org/10.1007/s00497-001-0120-6

    Article  CAS  Google Scholar 

  • Alves ER, Carneiro VTC, Dusi DMA (2007) In situ localization of three cDNA sequences associated with the later stages of aposporic embryo sac development of Brachiaria brizantha. Protoplasma 231:161–171. https://doi.org/10.1007/s00709-007-0253-z

    Article  CAS  PubMed  Google Scholar 

  • Araujo ACG, Nóbrega JM, Pozzobon MT, Carneiro VTC (2005) Evidence of sexuality in induced tetraploids of Brachiaria brizantha (Poaceae) Euphytica 144:39–50

  • Åstrand J, Knight C, Robson J, Talle B, Wilson ZA (2021) Evolution and diversity of the angiosperm anther: trends in function and development. Plant Rep 34:307–319. https://doi.org/10.1007/s00497-021-00416-1

    Article  Google Scholar 

  • Barnes SH, Blackmore S (1992) Ultrastructural organization of two tapetal types in angiosperms. Arch Histol Cytol 55:217–224

    Article  PubMed  Google Scholar 

  • Browne RG, Iacuone S, Li SF, Dolferus R, Parish RW (2018) Anther morphological development and stage determination in Triticum aestivum. Front Plant Sci 9:1–13. https://doi.org/10.3389/fpls.2018.00228

    Article  Google Scholar 

  • Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a Putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718–1727

    Article  CAS  PubMed  Google Scholar 

  • Chu, C.C. (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of Symposium on Plant Tissue Culture, Science Press, Peking, pp 45–50.

  • Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis somatic embryogenesis receptor kinases1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17:3350–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dusi DMA (2001) Apomixis in Brachiaria decumbens Stapf. PhD thesis, University of Wageningen, Wageningen

  • Dusi DMA (2015) Hibridização in situ para detecção da expressão de genes em tecidos vegetais. In: Brasileiro ACM, Carneiro VTC (eds) Manual de transformação genética de plantas, 2nd edn. Embrapa, Brasilia, pp 303–327

    Google Scholar 

  • Dusi DMA, Willemse MTM (1999a) Apomixis in Brachiaria decumbens Stapf.: gametophytic development and reproductive calendar. Acta Biol Cracov Ser Bot 41:151–162

    Google Scholar 

  • Dusi DMA, Willemse MTM (1999b) Activity and localisation of sucrose synthase and invertase in ovules of sexual and apomictic Brachiaria decumbens. Protoplasma 208:173–185

    Article  CAS  Google Scholar 

  • Dusi DMA, Alves ER, Willemse MTM, Falcão R, Valle CB, Carneiro VTC (2010) Toward in vitro fertilization in Brachiaria spp. Sex Plant Reprod 23:187–197. https://doi.org/10.1007/s00497-010-0134-z

    Article  PubMed  Google Scholar 

  • Genovesi AD (1990) Maize (Zea mays L.): In vitro production of haploids. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol. 12: Haploids in crop improvement I. Springer-Verlag Berlin Heidelberg, pp 176–203

  • Gómez JF, Talle B, Wilson ZA (2015) Anther and pollen development: a conserved development pathway. J Integr Plant Biol 57(11):876–891

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez JF, Wilson ZA (2012) Non-destructive staging of barley reproductive development for molecular analysis based upon external morphology. J Exp Bot 63:4085–4094. https://doi.org/10.1093/jxb/ers092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Mena C, Honys D, Datla R, Testillano PS (2022) Editorial: advances in pollen research: biology, biotechnology and plant breeding applications. Front Plant Sci 13:876502. https://doi.org/10.3389/fpls.2022.876502

    Article  PubMed  PubMed Central  Google Scholar 

  • Guimarães LA, Dusi DMA, Masiero S, Resentini F, Gomes ACMM, Silveira ED, Florentino LH, Rodrigues JCM, Colombo L, Carneiro VTC (2013) BbrizAGL6 is differentially expressed during embryo sac formation of apomictic and sexual Brachiaria brizantha plants. Plant Mol Biol Rep 31:1397–1406. https://doi.org/10.1007/s11105-013-0618-8

    Article  CAS  Google Scholar 

  • Hause B, Hause G, Pechan P, Van Lammeren AAM (1993) Cytoskeletal changes and induction of embryogenesis in microspore and pollen cultures of Brassica napus L. Cell Biol Int 17:153–168

    Article  Google Scholar 

  • Heslop-Harrison J (1982) Pollen-stigma interaction and cross-incompatibility in the grasses. Science 215(4538):1358–1364. https://doi.org/10.1126/science.215.4538.1358

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison J, Dickinson HG (1969) Time relationships of sporopollenin synthesis associated with tapetum and microspores in Lilium. Planta 84:199–214

    Article  CAS  PubMed  Google Scholar 

  • Jaffri SRF, MacAlister CA (2022) Sequetial deposition and remodeling of cell wall polymers during tomato pollen development. Front Plant Sci 12:703713. https://doi.org/10.3389/fpls.2021.703713

    Article  Google Scholar 

  • Junqueira Filho RG, Mendes-Bonato AB, Pagliarini MS, Bione NC, Borges do Valle C, de Oliveira Penteado MI, (2003) Absence of microspore polarity, symmetric divisions and pollen cell fate in Brachiaria decumbens (Gramineae). Genome 46:83–8. https://doi.org/10.1139/g02-114

    Article  PubMed  Google Scholar 

  • Koehler AD, Irsigler AST, Carneiro VTC, Cabral GB, Rodrigues JCM, Gomes ACMM, Togawa RC, Costa MMC, Martinelli AP, Dusi DMA (2020) SERK genes identification and expression analysis during somatic embryogenesis and sporogenesis of sexual and apomictic Brachiaria brizantha (syn. Urochloa brizantha). Planta 252:39. https://doi.org/10.1007/s00425-020-03443-w

    Article  CAS  PubMed  Google Scholar 

  • Lacerda ALM, Dusi DMA, Alves ER, Rodrigues JCM, Gomes ACMM, Carneiro VTC (2012) Expression analyzes of Brachiaria brizantha genes encoding ribosomal proteins BbrizRPS8, BbrizRPS15a and BbrizRPL41 during development of ovaries and anthers. Protoplasma 250:505–514. https://doi.org/10.1007/s00709-012-0433-3

    Article  CAS  PubMed  Google Scholar 

  • Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434. https://doi.org/10.1146/annurev.arplant.55.031903.141717

    Article  CAS  PubMed  Google Scholar 

  • Maluszynski M, Kasha KJ, Foster BP, Szarejko I (2003) Doubled haploid production in crop plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1293-4

  • Mendes-Bonato AB, Pagliarini MS, Forli F, Valle CB, Penteado MIO (2002) Chromosome numbers and microsporogenesis in Brachiaria brizantha (Gramineae). Euphytica 125:419–425

    Article  Google Scholar 

  • Mendes-Bonato AB, Felismino MF, Kaneshima AMS, Pessim C, Calisto V, Pagliarini MS, Valle CB (2009) Abnormal meiosis in tetraploid genotypes of Brachiaria brizantha (Poaceae) induced by colchicine: its implications for breeding. J Appl Genet 50:83–87. https://doi.org/10.1007/BF03195658

    Article  CAS  PubMed  Google Scholar 

  • Miles JW, Valle CB (1996) Manipulation of apomixis in Brachiaria breeding. In: Miles JW, Maass BL, Valle CB (eds) Brachiaria: Biology, agronomy and improvement. Ciat, Cali-Colombia, pp 164–177

  • Monteiro LC, Verzignassi JR, Barrios SCL, Valle CB, Fernandes CD, Benteo GL, Libório CB (2016) Characterization and selection of interspecific hybrids of Brachiaria decumbens for seed production in Campo Grande - MS. Crop Breed Appl Biot 16:174–218. https://doi.org/10.1590/1984-70332016v16n3a27

    Article  Google Scholar 

  • Nakamura AT, Longhi-Wagner HM (2010) Scatena VL (2010) Anther and pollen development in some species of Poaceae (Poales) Braz. J Biol 70(2):351–360

    CAS  Google Scholar 

  • Ndikumana J (1985) Etude de l’hybridation entre espèces apomictiques et sexuées dans le genre Brachiaria. Ph.D. thesis, Université Catholique de Louvain, Belgium

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embriology of angiosperms. Springer-Verlag, Berlin, pp 475–518

    Chapter  Google Scholar 

  • Pacini E (2010) Relationships between tapetum, loculus, and pollen during development. Int J Plant Sci 171:1–11

    Article  Google Scholar 

  • Pacini E, Franchi GG (1993) Role of the tapetum in pollen and spore dispersal In: Hesse M, Pacini E, Willemse MTM (eds) The Tapetum: cytology, function, biochemistry and evolution. Plant systematics and evolution (Supplementum 7). Springer-Verlag, Vienna, p 1–11

  • Pacini E, Franchi GG, Hesse M (1985) The tapetum: its form, function, and possible phylogeny in Embryophyta. Pl Syst Evol 149:155–185

    Article  Google Scholar 

  • Pandey S, Moradi AB, Dovzhenko O, Touraev A, Palme F, Welsch R (2022) Molecular control of sporophyte-gametophyte ontogeny and transition in plants. Front Plant Sci 12:789789. https://doi.org/10.3389/fpls.2021.789789

    Article  PubMed  PubMed Central  Google Scholar 

  • Risso-Pascotto C, Pagliarini MS, Valle CB (2006) Microsporogenesis in Brachiaria dictyoneura (Fig. & De Not.) Stapf (Poaceae: Paniceae). Genet Mol Res 5:837–845

    CAS  PubMed  Google Scholar 

  • Rodrigues JCM, Cabral GB, Dusi DMA, Mello LV, Rigden DJ, Carneiro VTC (2003) Identification of differentially expressed cDNA sequences in ovaries of sexual and apomictic plants of Brachiaria brizantha. Plant Mol Biol 53:745–757

    Article  CAS  PubMed  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:S46–S60. https://doi.org/10.1105/tpc.017012

  • Sharma A, Singh MB, Bhalla PL (2015a) Anther ontogeny in Brachypodium distachyon. Protoplasma 252:439–450. https://doi.org/10.1007/s00709-014-0689-x

    Article  PubMed  Google Scholar 

  • Sharma A, Singh MB, Bhalla PL (2015b) Ultrastructure of microsporogenesis and microgametogenesis in Brachypodium distachyon. Protoplasma 252:1575–1586. https://doi.org/10.1007/s00709-015-0793-6

    Article  CAS  PubMed  Google Scholar 

  • Solís M-T, Pintos B, Prado M-J, Bueno M-Á, Raska I, Risueno M-C, Testillano PS (2008) Early markers of in vitro microspore reprogramming to embryogenesis in olive (Olea europaea L.). Plant Sci 174:597–605

    Article  Google Scholar 

  • Soriano M, Li H (2013) Boutilier K (2013) Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reprod 26:181–196. https://doi.org/10.1007/s00497-013-0226-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva TD (2012) Microspore Embryogenesis. In: Sato, K-I (ed), Embryogenesis, pp 573–596. https://doi.org/10.5772/37039

  • Silveira ED, Guimarães LA, Dusi DMA, Silva FR, Martins NF, Costa MMC, Alves-Ferreira M, Carneiro VTC (2012) Expressed sequence-tag analysis of ovaries of Brachiaria brizantha reveals genes associated with the early steps of embryo sac differentiation of apomictic plants. Plant Cell Rep 31:403–416. https://doi.org/10.1007/s00299-011-1175-y

    Article  CAS  PubMed  Google Scholar 

  • Skerman PJ, Riveros F (1989). Tropical grasses. FAO Plant production and protection series 23, FAO, Rome

  • Ślusarkiewicz-Jarzina A, Pudelska H, Woźna J, Pniewski T (2017) Improved production of doubled haploids of winter and spring triticale hybrids via combination of colchicine treatments on anthers and regenerated plants. J Appl Genetics 58:287–295. https://doi.org/10.1007/s13353-016-0387-9

    Article  CAS  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultra Struct R 26:31–43

    Article  CAS  Google Scholar 

  • Sun L, Xiang X, Yang Z, Yu P, Wen X, Wang H, Abbas A, Khan RH, Zhang Y, Cheng S, Cao L (2018) OsGPAT3 plays a critical role in anther wall programmed cell death and pollen development in rice. Int J Mol Sci 19:4017. https://doi.org/10.3390/ijms19124017

    Article  PubMed  PubMed Central  Google Scholar 

  • Valle CB, Jank L, Resende RMS (2009) O melhoramento de forrageiras tropicais no Brasil. Revista Ceres 56:460–472

    Google Scholar 

  • Walbot V, Egger RL (2016) Pre-meiotic anther development: cell fate specification and differentiation. Annu Rev Pant Biol 67:365–395

    Article  CAS  Google Scholar 

  • Weyen J. (2021) Applications of doubled haploids in plant breeding and applied research. In: Segui-Simarro J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2287. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1315-3_2

  • Worthington M, Heffelfinger C, Bernal D, Zapata YP, Quintero C, Perez JG, Vega JD, Miles J, Dellaporta J, Tohme J (2016) A parthenogenesis gene candidate and evidence for segmental allopolyploidy in apomictic Brachiaria decumbens. Genetics 203:1117–1132. https://doi.org/10.1534/genetics.116.190314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J-S, Yao C, Xu Q-L, Sui C-X, Jia X-L, Hu W-J, Lv Y-L, Feng Y-F, Peng Y-J, Shen S-Y, Yang N-Y, Lou Y-X, Yang Z-N (2021) Development of the middle layer in the anther of Arabidopsis. Front Plant Sci 12:634114. https://doi.org/10.3389/fpls.2021.634114

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S-L, Xie L-F, Mao H-Z, Puah CS, Yang W-C, Jiang L, Sundaresan V, Ye D (2003) TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15:2792–2804. https://doi.org/10.1105/tpc.016618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaki M, Dickinson H (1991) Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sex Plant Reprod 4:48–55

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Dr. Michiel T.M. Willemse for critically reviewing the manuscript; Conselho Nacional de Desenvolvimento Científico e Tecnológico, (CNPq) for the doctorate scholarship (141959/2006-1) for ADK and Research Fellowship for APM (305785/2008-7); Empresa Brasileira de Pesquisa Agropecuária (Embrapa) for financial support; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. We cordially acknowledge CMI-FOP-UNICAMP coordinated by Prof. Pedro D. Novaes for the use of the transmission electron microscope.

Funding

Empresa Brasileira de Pesquisa Agropecuária, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 001, Adriana Martinelli, Conselho Nacional de Desenvolvimento Científico e Tecnológico 141959/2006-1, Andréa Koehler, 305785/2008-7, Adriana Martinelli.

Author information

Authors and Affiliations

Authors

Contributions

ADK, APM, VTCC, and DMAD designed the project; ADK, MLR, DMAD, and GBC performed experimental procedures; ADK, MLR, DMAD, VTCC, and APM performed image analysis; ADK, MLR, GBC, VTCC APM, and DMAD participated in the research, analyzed the data, and wrote the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Diva M. A. Dusi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Benedikt Kost

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koehler, A.D., Rossi, M.L., Carneiro, V.T.C. et al. Anther development in Brachiaria brizantha (syn. Urochloa brizantha) and perspective for microspore in vitro culture. Protoplasma 260, 571–587 (2023). https://doi.org/10.1007/s00709-022-01802-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-022-01802-w

Keywords

Navigation