Skip to main content
Log in

Analysis on characteristics of female gametophyte and functional identification of genes related to inflorescences development of Kentucky bluegrass

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The inflorescence is composed of spikes, and the spike is the carrier of grass seed formation and development, so the development status of inflorescence implies grass seed yield and quality. So far, the systematic analysis of inflorescence development of Kentucky bluegrass has not been reported. The development process of the female gametophyte of wild germplasm materials of Kentucky bluegrass in Gannan, Gansu Province of China (KB-GN), was observed. Based on this, the key developmental stages of inflorescence in KB-GN were divided into premeiosis (GPreM), meiosis (GM), postmeiosis (GPostM), and anthesis (GA), and four stages of inflorescence were selected to analyze the transcriptome expression profile. We found that its sexual reproduction formed a polygonum-type embryo sac. Transcriptome analysis showed that 4256, 1125, 1699, and 3127 genes were highly expressed in GPreM, GM, GPostM, and GA, respectively. And a large number of transcription factors (TFs) such as MADS-box, MYB and NAC, AP2, C2H2, FAR1, B3, bHLH, WRKY, and TCP were highly expressed throughout the inflorescence development stages. KEGG enrichment and MapMan analysis showed that genes involved in plant hormone metabolism were also highly expressed at the entire stages of inflorescence development. However, a few TFs belong to stage-specific genes, such as TRAF proteins with unknown function in plants was screened firstly, which was specifically and highly expressed in the GPreM, indicating that TRAF may regulate the preparatory events of meiosis or be essential for the development of megaspore mother cell (MMC). The expression patterns of 15 MADS-box genes were analyzed by qRT-PCR, and the expression results were consistent with that of the transcriptome. The study on the inflorescence development of KB-GN will be great significant works and contribution to illustrate the basic mechanism of grass seeds formation and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The original sequencing reads have been submitted to the Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra) at NCBI (accession number: PRJNA680673).

References

Download references

Funding

We are grateful to the National Natural Science Foundation of China (NSFC) (project # 31760699) for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

HM conceived and designed the research. JZ and YL conducted the experiments. JZ analyzed the data and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Huiling Ma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Peter Nick

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ma, H. & Liu, Y. Analysis on characteristics of female gametophyte and functional identification of genes related to inflorescences development of Kentucky bluegrass. Protoplasma 259, 1061–1079 (2022). https://doi.org/10.1007/s00709-021-01720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01720-3

Keywords

Navigation