Skip to main content
Log in

Transgenic tobacco co-expressing flavodoxin and betaine aldehyde dehydrogenase confers cadmium tolerance through boosting antioxidant capacity

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Excessive heavy metal (HM) levels in soil have become a source of concern due to their adverse effects on human health and the agriculture industry. Soil contamination by HMs leads to an accumulation of reactive oxygen species (ROSs) within the plant cell and disruption of photosynthesis-related proteins. The response of tobacco lines overexpressing flavodoxin (Fld) and betaine aldehyde dehydrogenase (BADH) to cadmium (Cd) toxicity was investigated in this study. PCR results demonstrated the expected amplicon length of each gene in the transgenic lines. Absolute qRT-PCR demonstrates a single copy of T-DNA integration into each transgenic line. Relative qRT-PCR confirmed overexpression of Fld and BADH in transgenic lines. The maximum quantum yield of photosystem II (Fv/Fm) was measured under Cd toxicity stress and revealed that transgenic lines had a higher Fv/Fm than wild-type (WT) plants. Accumulation of proline, glycine betaine (GB), and higher activity of antioxidant enzymes alongside lower levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) was indicative of a robust antioxidant system in transgenic plants. Therefore, performing a loop in reducing the ROS produced in the photosynthesis electron transport chain and stimulating the ROS scavenger enzyme activity improved the plant tolerance to Cd stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

taken from three independent biological replicates. Different lower case letters above columns indicate significant differences at the P < 0.05 and show significant differences compared with WT plants

Fig. 6
Fig. 7

taken from three independent biological replicates. Different lower case letters above columns indicate significant differences at the P < 0.05 and indicate significant differences when compared with WT plants

Fig. 8

taken from three independent biological replicates. Different lower case letters above columns indicate significant differences at the P < 0.05 and indicate significant differences when compared with WT plants

Fig. 9

taken from three independent biological replicates. Different lower case letters above columns indicate significant difference at the P < 0.05 and indicate significant differences when compared with WT plants

Similar content being viewed by others

Abbreviations

HM:

Heavy metal

WT:

Wild type

GB:

Glycine betaine

ROS:

Reactive oxygen species

APX:

Ascorbate peroxidase

CAT:

Catalase

SOD:

Superoxide dismutase

BADH :

Betaine aldehyde dehydrogenase

References

  • Aalifar M, Aliniaeifard S, Arab M, Zare Mehrjerdi M, Dianati Daylami S, Serek M, Woltering E, Li T (2020) Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system. Front Plant Sci 11:511

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali B, Tao Q, Zhou Y, Gill RA, Ali S, Rafiq MT, Xu L, Zhou W (2013) 5-Aminolevolinic acid mitigates the cadmium-induced changes in Brassica napus as revealed by the biochemical and ultra-structural evaluation of roots. Ecotoxicol Environ Saf 92:271–280

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Abbas Z, Seleiman MF, Rizwan M, YavaŞ İ, Alhammad BA, Shami A, Hasanuzzaman M, Kalderis D (2020) Glycine betaine accumulation, significance and interests for heavy metal tolerance in plants. Plants 9:896

    Article  CAS  PubMed Central  Google Scholar 

  • Aliniaeifard S, Malcolm Matamoros P, van Meeteren U (2014) Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? Physiol Plant 152:688–699

    Article  CAS  PubMed  Google Scholar 

  • Aliniaeifard S, van Meeteren U (2014) Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning. J Exp Bot 65:6529–6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Badran EG, Abogadallah GM, Nada RM, Alla MMN (2015) Role of glycine in improving the ionic and ROS homeostasis during NaCl stress in wheat. Protoplasma 252:835–844

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Batool T, Ali S, Seleiman MF, Naveed NH, Ali A, Ahmed K, Abid M, Rizwan M, Shahid MR, Alotaibi M (2020) Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci Rep 10:1–19

    Article  CAS  Google Scholar 

  • Bayçu G, Moustaka J, Gevrek N, Moustakas M (2018) Chlorophyll fluorescence imaging analysis for elucidating the mechanism of photosystem II acclimation to cadmium exposure in the hyperaccumulating plant Noccaea caerulescens. Materials 11:2580

    Article  PubMed Central  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    Article  CAS  PubMed  Google Scholar 

  • Bubner B, Baldwin IT (2004) Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep 23:263–271

    Article  CAS  PubMed  Google Scholar 

  • Caregnato FF, Koller CE, MacFarlane GR, Moreira JC (2008) The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 56:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Chaum S, Kirdmanee C (2010) Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turk J Agric for 34:517–527

    CAS  Google Scholar 

  • Chen H, Zhang W, Yang X, Wang P, McGrath SP, Zhao F-J (2018) Effective methods to reduce cadmium accumulation in rice grain. Chemosphere 207:699–707

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    Article  CAS  PubMed  Google Scholar 

  • Coba de la Peña T, Redondo FJ, Manrique E, Lucas MM, Pueyo JJ (2010) Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin. Plant Biotechnol J 8:954–965

    Article  PubMed  CAS  Google Scholar 

  • Dal Corso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667

    Article  Google Scholar 

  • Daudi A, O’Brien JA (2012) Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio Protoc 2:1–4

    Article  Google Scholar 

  • Deng G, Li M, Li H, Yin L, Li W (2014) Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteridoides). Aquat Bot 112:23–32

    Article  CAS  Google Scholar 

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Djemal, R., Khoudi, H., 2021. The ethylene-responsive transcription factor of durum wheat, TdSHN1, confers cadmium, copper, and zinc tolerance to yeast and transgenic tobacco plants. Protoplasma, 1–13.

  • Duman F, Aksoy A, Aydin Z, Temizgul R (2011) Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water Air Soil Pollut 217:545–556

    Article  CAS  Google Scholar 

  • Ekmekçi Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611

    Article  PubMed  CAS  Google Scholar 

  • El-Atroush H, Mostafa EA, Osman SA (2020) Molecular characterization of betaine aldehyde dehydrogenase (BADH) gene and proline estimation in Hordeum vulgare L. in response to abiotic stress. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology 12:1–21

    Google Scholar 

  • Fakhimi, F., Azar, A., Nahandi, F., Bashir, N., Gohari, G., 2020. Effect of salicylic acid on betaine aldehyde dehydrogenase gene expression in potato (Solanum tuberosum L., Cv. Agria) under salinity stress. Environmental Stresses in Crop Sciences 13.

  • FAO., 2009. Crop prospects and food situation.

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Genty, B., Briantais, J.-M., Baker, N.R., 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)-General Subjects 990 87 92.

  • Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N (2015) Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environ Sci Pollut Res 22:10375–10394

    Article  CAS  Google Scholar 

  • Gómez, R., Figueroa, N., Melzer, M., Hajirezaei, M.-R., Carrillo, N., Lodeyro, A.F., 2020. Photosynthetic characterization of flavodoxin-expressing tobacco plants reveals a high light acclimation-like phenotype. Biochimica et Biophysica Acta (BBA)-Bioenergetics 148211.

  • Gouiaa S, Khoudi H (2019) Expression of V-PPase proton pump, singly or in combination with a NHX1 transporter, in transgenic tobacco improves copper tolerance and accumulation. Environ Sci Pollut Res 26:37037–37045

    Article  CAS  Google Scholar 

  • Grieve C, Grattan S (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Hall JÁ (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Harbaoui, M., Romdhane, W.B., Hsouna, A.B., Brini, F., Saad, R.B., 2021. The durum wheat annexin, TdAnn6, improves salt and osmotic stress tolerance in Arabidopsis via modulation of antioxidant machinery. Protoplasma 1 13.

  • Hasanuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

    Article  CAS  PubMed Central  Google Scholar 

  • He C, Zhang W, Gao Q, Yang A, Hu X, Zhang J (2011) Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in wheat seedlings. Euphytica 177:151–167

    Article  CAS  Google Scholar 

  • Hirve M Jain M Rastogi A Kataria S 2020. Heavy metals, water deficit, and their interaction in plants: an overview. Plant Life Under Changing Environment 175 206.

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, H., Ullah, F., Zhou, D.-X., Yi, M., Zhao, Y., 2019. Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science 10.

  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y (2009a) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Islam, M.M., Hoque, M.A., Okuma, E., Jannat, R., Banu, M.N.A., Jahan, M.S., Nakamura, Y., Murata, Y., 2009b. Proline and glycinebetaine confer cadmium tolerance on tobacco bright yellow-2 cells by increasing ascorbate-glutathione cycle enzyme activities. Bioscience, biotechnology, and biochemistry, 0909031637–0909031637.

  • Jawad Hassan M, Ali Raza M, Ur Rehman S, Ansar M, Gitari H, Khan I, Wajid M, Ahmed M, Abbas Shah G, Peng Y (2020) Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants 9:1575

    Article  PubMed Central  CAS  Google Scholar 

  • Kawasaki T, Yamada K, Yoshimura S, Yamaguchi K (2017) Chitin receptor-mediated activation of MAP kinases and ROS production in rice and Arabidopsis. Plant Signaling & Behavior 12:e1361076

    Article  CAS  Google Scholar 

  • Kumar G, Kushwaha HR, Panjabi-Sabharwal V, Kumari S, Joshi R, Karan R, Mittal S, Pareek SLS, Pareek A (2012) Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol 12:1–16

    Article  CAS  Google Scholar 

  • Küpper H, Parameswaran A, Leitenmaier B, Trtilek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674

    Article  PubMed  Google Scholar 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    Article  PubMed  CAS  Google Scholar 

  • Li C, Zhang T, Feng P, Li D, Brestic M, Liu Y, Yang X (2021) Genetic engineering of glycinebetaine synthesis enhances cadmium tolerance in BADH-transgenic tobacco plants via reducing cadmium uptake and alleviating cadmium stress damage. Environmental and Experimental Botany 191:104602

    Article  CAS  Google Scholar 

  • Li Y, Zhang S, Jiang W, Liu D (2013) Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ Sci Pollut Res 20:1117–1123

    Article  CAS  Google Scholar 

  • Li Z, Yuan S, Jia H, Gao F, Zhou M, Yuan N, Wu P, Hu Q, Sun D, Luo H (2017) Ectopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance. Plant Biotechnol J 15:433–446

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhao S, Tan F, Zhao H, Wang D, Si H, Chen Q (2017) Changes in ROS production and antioxidant capacity during tuber sprouting in potato. Food Chem 237:205–213

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Chen W, He X (2011) Cadmium-induced changes in growth and antioxidative mechanisms of a medicine plant (Lonicera japonica Thunb.). Journal of Medicinal Plants Research 5:1411–1417

    CAS  Google Scholar 

  • Lodeyro AF, Ceccoli RD, Karlusich JJP, Carrillo N (2012) The importance of flavodoxin for environmental stress tolerance in photosynthetic microorganisms and transgenic plants. Mechanism, evolution and biotechnological potential. FEBS Lett 586:2917–2924

    Article  CAS  PubMed  Google Scholar 

  • López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2011) Effects of cadmium on gas exchange and phytohormone contents in citrus. Biol Plant 55:187–190

    Article  CAS  Google Scholar 

  • Lulsdorf MM, Yuan HY, Slater SM, Vandenberg A, Han X, Zaharia LI, Abrams SR (2013) Endogenous hormone profiles during early seed development of C. arietinum and C. anatolicum. Plant Growth Regul 71:191–198

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Mehla, N., Sindhi, V., Josula, D., Bisht, P., Wani, S.H., 2017. An introduction to antioxidants and their roles in plant stress tolerance, Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer 1 23.

  • Mohsenpour M, Tohidfar M, Jelodar NB, Jouzani GS (2015) Designing a new marker-free and tissue-specific platform for molecular farming applications. J Plant Biochem Biotechnol 24:433–440

    Article  CAS  Google Scholar 

  • Monneveux P, Ramírez DA, Pino M-T (2013) Drought tolerance in potato (S. tuberosum L.): can we learn from drought tolerance research in cereals? Plant Sci 205:76–86

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nazila, N., Amin, B., Masoud, T., Shahram, P., 2013. Agrobacterium mediated transformation of Fld and Gus genes into canola for salinity stress. Journal of Stress Physiology & Biochemistry 9.

  • Niazian M, Sadat-Noori SA, Tohidfar M, Galuszka P, Mortazavian SMM (2019) Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant. Ind Crops Prod 132:29–40

    Article  CAS  Google Scholar 

  • Niazian M, Tohidfar M, Galuszka P (2017) Optimization of Agrobacterium-mediated gene transformation in Ajowan medicinal plant (Trachyspermum ammi L.) using fld gene. Journal of Cellular and Molecular Research (iranian Journal of Biology) 30:313–327

    Google Scholar 

  • Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, Negi YK, Arora S, Reddy MK (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:581

    Article  PubMed  PubMed Central  Google Scholar 

  • Park EJ, Jeknić Z, Pino MT, Murata N, Chen THH (2007) Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant, Cell Environ 30:994–1005

    Article  CAS  Google Scholar 

  • Pathi KM, Tula S, Tuteja N (2013) High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium-mediated genetic transformation of tobacco. Plant signaling & behavior 8:e24354

    Article  CAS  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierella Karlusich JJ, Lodeyro AF, Carrillo N (2014) The long goodbye: the rise and fall of flavodoxin during plant evolution. J Exp Bot 65:5161–5178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rasheed R, Iqbal M, Ashraf MA, Hussain I, Shafiq F, Yousaf A, Zaheer A (2018) Glycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in tomato. J Hortic Sci Biotechnol 93:385–391

    Article  CAS  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    Article  CAS  PubMed Central  Google Scholar 

  • Ren X, Liu F, Bao Z, Zhang C, Wu X, Chen L, Liu R, Dong H (2008) Root growth of Arabidopsis thaliana is regulated by ethylene and abscisic acid signaling interaction in response to HrpN Ea, a bacterial protein of harpin group. Plant Mol Biol Report 26:225–240

    Article  CAS  Google Scholar 

  • Rezaei Qusheh Bolagh, F., Solouki, A., Tohidfar, M., Zare Mehrjerdi, M., Izadi-Darbandi, A., Vahdati, K., 2020. Agrobacterium-mediated transformation of Persian walnut using BADH gene for salt and drought tolerance. The Journal of Horticultural Science and Biotechnology 1–10.

  • Robinson S, Jones G (1986) Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. Funct Plant Biol 13:659–668

    Article  CAS  Google Scholar 

  • Ron M (2017) Ros are good. Trends Plant Sci 22:11–19

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  CAS  PubMed  Google Scholar 

  • Sakouhi L, Kharbech O, Massoud MB, Gharsallah C, Hassine SB, Munemasa S, Murata Y, Chaoui A (2021) Calcium and ethylene glycol tetraacetic acid mitigate toxicity and alteration of gene expression associated with cadmium stress in chickpea (Cicer arietinum L.) shoots. Protoplasma 258:849–861

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., Russel, D., 2001. Molecular cloning. Chapter 12. Protocols 8, 11, and 12. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

  • Sánchez Moreiras AM, Graña E, Reigosa-Roger MJ, Araniti F (2020) Imaging of chlorophyll a fluorescence in natural compound-induced stress detection. Front Plant Sci 11:1991

    Article  Google Scholar 

  • Seifikalhor M, Aliniaeifard S, Bernard F, Seif M, Latifi M, Hassani B, Didaran F, Bosacchi M, Rezadoost H, Li T (2020) γ-Aminobutyric acid confers cadmium tolerance in maize plants by concerted regulation of polyamine metabolism and antioxidant defense systems. Sci Rep 10:1–18

    Article  CAS  Google Scholar 

  • Seifikalhor, M., Hassani, S.B., Aliniaeifard, S., 2019. Seed priming by cyanobacteria (Spirulina platensis) and salep gum enhances tolerance of maize plant against cadmium toxicity. Journal of Plant Growth Regulation, 1–13.

  • Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Sidhu, G.P.S., Bali, A.S., Handa, N., Kapoor, D., Yadav, P., Khanna, K., 2019. Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation, 1–23.

  • Sheikh Beig Goharrizi, M., Dejahang, A., Tohidfar, M., Izadi Darbandi, A., Carrillo, N.J., Hajirezaei, M., Vahdati, K., 2016. Agrobacterium mediated transformation of somatic embryos of Persian walnut using fld gene for osmotic stress tolerance.

  • Shukla U, Murthy R, Kakkar P (2008) Combined effect of ultraviolet-B radiation and cadmium contamination on nutrient uptake and photosynthetic pigments in Brassica campestris L. seedlings. Environmental Toxicology: an International Journal 23:712–719

    Article  CAS  Google Scholar 

  • Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett 8:199216

    Google Scholar 

  • Stein H, Honig A, Miller G, Erster O, Eilenberg H, Csonka LN, Szabados L, Koncz C, Zilberstein A (2011) Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Sci 181:140–150

    Article  CAS  PubMed  Google Scholar 

  • Stewart RR, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sychta K, Słomka A, Kuta E (2021) Insights into plant programmed cell death induced by heavy metals—discovering a terra incognita. Cells 10:65

    Article  CAS  PubMed Central  Google Scholar 

  • Sytar, O., Ghosh, S., Malinska, H., Zivcak, M., Brestic, M., 2020. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiologia Plantarum.

  • Tchounwou PB, Yedjou C, Patlolla A, Sutton D, Luch A (2012) Molecular, clinical and environmental toxicology. Molecular, Clinical and Environmental Toxicology 3:133–164

    Article  Google Scholar 

  • Tognetti VB, Palatnik JF, Fillat MF, Melzer M, Hajirezaei M-R, Valle EM, Carrillo N (2006) Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. Plant Cell 18:2035–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tognetti VB, Zurbriggen MD, Morandi EN, Fillat MF, Valle EM, Hajirezaei M-R, Carrillo N (2007) Enhanced plant tolerance to iron starvation by functional substitution of chloroplast ferredoxin with a bacterial flavodoxin. Proc Natl Acad Sci 104:11495–11500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umar J, Aliyu A, Shehu K, Abubakar L (2018) Influence of salt stress on proline and glycine betaine accumulation in tomato (Solanum lycopersicum L.). J Hort Plant 1:19–25

    Google Scholar 

  • Van Kooten O, Snel JF (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Wang G Yang D Wang W Ji J Jin C Guan C 2021. Endophytic bacteria associated with the enhanced cadmium resistance in NHX1-overexpressing tobacco plants. Environmental and Experimental Botany 104524.

  • Wang G, Zhang X, Li F, Luo Y, Wang W (2010) Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48:117–126

    Article  CAS  Google Scholar 

  • Wang X, Cheng M, Yang Q, Wei H, Xia A, Wang L, Ben Y, Zhou Q, Yang Z, Huang X (2019) A living plant cell-based biosensor for real-time monitoring invisible damage of plant cells under heavy metal stress. Science of The Total Environment 697:134097

    Article  CAS  PubMed  Google Scholar 

  • Wildi B, Lütz C (1996) Antioxidant composition of selected high alpine plant species from different altitudes. Plant, Cell Environ 19:138–146

    Article  CAS  Google Scholar 

  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plant 124:343–352

    Article  CAS  Google Scholar 

  • Yildirim E, Ekinci M, Turan M, Dursun A, Kul R, Parlakova F (2015) Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Archives of Agronomy and Soil Science 61:1673–1689

    Article  CAS  Google Scholar 

  • Yu H-Q, Zhou X-Y, Wang Y-G, Zhou S-F, Fu F-L, Li W-C (2017) A betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus enhances tolerance of Arabidopsis to high salt and drought stresses. Plant Growth Regul 83:265–276

    Article  CAS  Google Scholar 

  • Zhang A, Xu T, Zou H, Pang Q (2015a) Comparative proteomic analysis provides insight into cadmium stress responses in brown algae Sargassum fusiforme. Aquat Toxicol 163:1–15

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu X, Zhang H, Wang Y, Li T, Che Y, Wang J, Guo D, Sun G, Li X (2021) Thioredoxin-like protein CDSP32 alleviates Cd-induced photosynthetic inhibition in tobacco leaves by regulating cyclic electron flow and excess energy dissipation. Plant Physiol Biochem 167:831–839

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xu Z, Guo K, Huo Y, He G, Sun H, Guan Y, Xu N, Yang W, Sun G (2020) Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis. Ecotoxicology and Environmental Safety 202:110856

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xu Z, Huo Y, Guo K, Wang Y, He G, Sun H, Li M, Li X, Xu N (2020) Overexpression of Trx CDSP32 gene promotes chlorophyll synthesis and photosynthetic electron transfer and alleviates cadmium-induced photoinhibition of PSII and PSI in tobacco leaves. Journal of Hazardous Materials 398:122899

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu S, Yang S, Chen Y (2015b) Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma 252:911–924

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Zhou L, Liu J, Cao Z, Du X, Huang F, Pan G, Cheng F (2018) Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility. Plant Cell Rep 37:741–757

    Article  CAS  PubMed  Google Scholar 

  • Zurbriggen MD, Carrillo N, Tognetti VB, Melzer M, Peisker M, Hause B, Hajirezaei MR (2009) Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria. Plant J 60:962–973

    Article  CAS  PubMed  Google Scholar 

  • Zurbriggen MD, Tognetti VB, Fillat MF, Hajirezaei M-R, Valle EM, Carrillo N (2008) Combating stress with flavodoxin: a promising route for crop improvement. Trends Biotechnol 26:531–537

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mehrdad Shahbazi: conceptualization, methodology, data curation, writing-original draft preparation, reviewing and editing.

Masoud Tohidfar: conceptualization, supervision, methodology, data curation, reviewing and editing.

Sasan Aliniaeifard: conceptualization, methodology, data curation, reviewing and editing.

Farzaneh Yazdanpanah: methodology, reviewing and editing.

Massimo Bosacchi: critical reviewing and editing.

Not applicable.

Corresponding author

Correspondence to Masoud Tohidfar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Bhumi Nath Tripathi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbazi, M., Tohidfar, M., Aliniaeifard, S. et al. Transgenic tobacco co-expressing flavodoxin and betaine aldehyde dehydrogenase confers cadmium tolerance through boosting antioxidant capacity. Protoplasma 259, 965–979 (2022). https://doi.org/10.1007/s00709-021-01714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01714-1

Keywords

Navigation