Skip to main content
Log in

Salt stress of two rice varieties: root border cell response and multi-logistic quantification

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

How to capture the rice varieties salt stress sensitivity? Here, we measure responses of root border cells (1 day, ± 60 mM NaCl) and apply multi-logistic quantification of growth variables (21 days, ± 60 mM NaCl) to two rice varieties, salt-sensitive IR29 and tolerant Pokkali. Thus, logistic models determine the maximum response velocities (Vmax) and times of half-maximum (T0) for root border cell (RBC) and growth parameters. Thereof, seven variables show logistic models (0.58 < R ≤ 1) and monotonous responses in both Pokkali and IR29: root to shoot ratio by water content, primary root length, shoot water, adventitious root number, shoot dry and fresh weight, and root dry weight. Moreover, the regression to lognormal distribution (R = 0.99) of these seven Vmax fractionated by T0 represents the rice variety’s comprehensive response. Its quotient IR29/Pokkali is peaking at 98-fold higher velocity of IR29, thus capturing the variety’s sensitivity. Consequently, our finding of 66-fold higher Vmax of primary root length response of IR29 indicates an essential salt sensor in the root, including RBC. Finally, the effects of salt stress on RBC confirm multi-logistic quantification, showing 36% decrease of RBC mucilage layer in IR29, without change in Pokkali. Inversely, RBC number of Pokkali increases 43% without change in IR29. Briefly, this suggests both RBC and multi-logistic quantification for the screening for salt tolerance in two thousand rice varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Variables #1–3: SFW, SDW, S-water:

Shoot~fresh weight, ~dry weight, ~water

#4: ARN:

Adventitious root number

#5–6: RFW:

RDW

Root~ fresh weight, ~dry weight

#7–8: LRD, LRN:

Lateral root~density, ~number

#9: PRL:

Primary root length

#10: R-water:

Root water

#11–13: R/S-DW, R/S-FW, R/S-water:

Root to shoot ratio by ~dry weight, ~fresh weight, ~water

#14: SRN:

Seminal root number

#15–16: RBC-N, RBC-Muc:

Root border cell ~number, ~mucilage layer thickness

References

  • Adams TF, Wongchai C, Chaidee A, Pfeiffer W (2016) “Singing in the Tube” - audiovisual assay of plant oil repellent activity against mosquitoes (Culex pipiens). Parasitol Res 115:225–239

    Article  PubMed  Google Scholar 

  • Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albacete A, Martínez-Andújar C, Ghanem ME, Acosta M, Sánchez-Bravo J, Asins MJ, Cuartero J, Lutts S, Dodd IC, Pérez-Alfocea F (2009) Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant Cell Environ 32:928–938

    Article  CAS  PubMed  Google Scholar 

  • Albacete A, Ghanem ME, Dodd IC, Pérez-Alfocea F (2010) Principal component analysis of hormone profiling data suggests an important role for cytokinins in regulating leaf growth and senescence of salinized tomato. Plant Signal Behav 5:45–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arriola L, Niemira BA, Safir GR (1997) Border cells and arbuscular mycorrhizae in four Amaranthaceae species. Phytopathology 87:1240–1242

    Article  CAS  PubMed  Google Scholar 

  • Beadle CL (1993) Growth analysis. In: Hall DO, Scurlock JMO, Bolhàr-Nordenkampf HR, Leegood RC, Long SP (eds) Photosynthesis and production in a changing environment: a field and laboratory manual. Springer, Dordrecht, pp 36–46

    Google Scholar 

  • Bentrup FW (2017) Water ascent in trees and lianas: the cohesion-tension theory revisited in the wake of Otto Renner. Protoplasma. 254:627–633

    Article  CAS  PubMed  Google Scholar 

  • Bühl A, Zöfel (2000) SPSS Version 10. Addison-Wesley, München, pp 333–400

    Google Scholar 

  • Cai M-Z, Wang F-M, Li R-F, Zhang S-N, Wang N, Xu G-D (2011a) Response and tolerance of root border cells to aluminum toxicity in soybean seedlings. J Inorg Biochem 105:966–971

    Article  CAS  PubMed  Google Scholar 

  • Cai M-Z, Zhang S-N, Xing C-H, Wang F-M, Wang N, Zhu L (2011b) Developmental characteristics and aluminum resistance of root border cells in rice seedlings. Plant Sci 180:702–708

    Article  CAS  PubMed  Google Scholar 

  • Cannesan MA, Gangneux C, Lanoue A, Giron D, Laval K, Hawes M, Driouich A, Vicré-Gibouin M (2011) Association between border cell responses and localized root infection by pathogenic Aphanomyces euteiches. Ann Bot 108:459–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Liu P, Xu G, Cai M, Yu H, Chen M (2008) Effects of Al3+ on the biological characteristics of cowpea root border cells. Acta Physiol Plant 30:303–308

    Article  CAS  Google Scholar 

  • Curlango-Rivera G, Huskey DA, Mostafa A, Kessler JO, Xiong Z, Hawes MC (2013) Intraspecies variation in cotton border cell production: rhizosphere microbiome implications. Am J Bot 100:1706–1712

    Article  PubMed  Google Scholar 

  • Derex M, Bonnefon J-F, Boyd R, Mesoudi A (2019) Causal understanding is not necessary for the improvement of culturally evolving technology. Nat Hum Behav 3:446–452

    Article  PubMed  Google Scholar 

  • Driouich A, Durand C, Vicré-Gibouin M (2007) Formation and separation of root border cells. Trends Plant Sci 12:14–19

    Article  CAS  PubMed  Google Scholar 

  • Faiyue B, Al-Azzawi MJ, Flowers TJ (2010) The role of lateral roots in bypass flow in rice (Oryza sativa L.). Plant Cell Environ 33:702–716

    CAS  PubMed  Google Scholar 

  • Faiyue B, Al-Azzawi MJ, Flowers TJ (2012) A new screening technique for salinity resistance in rice (Oryza sativa L.) seedlings using bypass flow. Plant Cell Environ 35:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Falkner G, Falkner R (2013) Die Prozessphilosophie als Grundlage einer Theorie der Organismen. Annu Hist Philos Biol 16:209–233

    Google Scholar 

  • Gao Y, Lynch JP (2016) Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J Exp Bot 67:4545–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanem ME, Han RM, Classen B, Quetin-Leclerq J, Mahy G, Ruan CJ, Qin P, Pérez-Alfocea F, Lutts S (2010) Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: localization and composition in relation to salt stress. J Plant Physiol 167:382–392

    Article  CAS  Google Scholar 

  • Gregorio GB, Senadhira D (1993) Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theor Appl Genet 86:333–338

    Article  CAS  PubMed  Google Scholar 

  • Hamamoto L, Hawes MC, Rost TL (2006) The production and release of living root cap border cells is a function of root apical meristem type in dicotyledonous angiosperm plants. Ann Bot 97:917–923

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawes MC, Lin H-J (1990) Correlation of pectolytic enzyme activity with the programmed release of cells from root caps of pea (Pisum sativum). Plant Physiol 94:1855–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5:1360–1385

    Article  Google Scholar 

  • Hawes MC, Allen C, Turgeon BG, Curlango-Rivera G, Minh Tran T, Huskey DA, Xiong Z (2016) Root border cells and their role in plant defense. Annu Rev Phytopathol 54:143–161

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn, Circ 347:1-32

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:11–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Iijima M, Kono Y (1991) Interspecific differences of the root system structures of four cereal species as affected by soil compaction. Japanese J Crop Sci 60:130-138

  • Iijima M, Barlow PW, Bengough AG (2003) Root cap structure and cell production rates of maize (Zea mays) roots in compacted sand. New Phytol 160:127–134

    Article  PubMed  Google Scholar 

  • Julkowska MM, Hoefsloot HCJ, Mol S, Feron R, de Boer GN, Haring MA, Testerink C (2014) Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity. Plant Physiol 66:1387–1402

    Article  CAS  Google Scholar 

  • Kantrowitz ER, Lipscomb WN (1990) Escherichia coli aspartate transcarbamoylase: the molecular basis for a concerted allosteric transition. Trends Biochem Sci 15:53–59

    Article  CAS  PubMed  Google Scholar 

  • Koevoets IT, Venema JH, Elzenga JT, Testerink C (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7:1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopittke PM, de Jonge MD, Menzies NW, Wang P, Donner E, McKenna BA, Paterson D, Howard DL, Lombi E (2012) Examination of the Distribution of Arsenic in Hydrated and Fresh Cowpea Roots Using Two- and Three-Dimensional Techniques. Plant Physiol 159:1149–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshland DE, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–385

    Article  CAS  PubMed  Google Scholar 

  • Kumpf RP, Nowack MK (2015) The root cap: a short story of life and death. J Exp Bot 66:5651–5662

    Article  CAS  PubMed  Google Scholar 

  • Limpert E, Stahel W, Abbt M (2001) Lognormal distributions across the sciences: keys and clues. BioScience 51:341–352

    Article  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    Article  CAS  PubMed  Google Scholar 

  • Miyasaka SC, Hawes MC (2001) Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol 125:1978–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Odell RE, Dumlao MR, Samar D, Silk WK (2008) Stage-dependent border cell and carbon flow from roots to rhizosphere. Am J Bot 95:441–446

    Article  PubMed  Google Scholar 

  • Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y-X (2011) Effects of NaCl on generation of root border cells in cucumber (Cucumis sativus L.). Plant Physiol Commun 47:97–101

    Google Scholar 

  • Qiao Y-X, Zhang Y-P, Zhang H-X, Tian Y-Q, Gao L-H (2013) Developmental characteristics and cinnamic acid resistance of root border cells in cucumber and figleaf gourd seedlings. J Integr Agric 12:2065–2073

    Article  Google Scholar 

  • Radanielson AM, Angeles O, Lia T, Ismail A, Gaydon DS (2018a) Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions. Field Crop Res 220:46–56

    Article  Google Scholar 

  • Radanielson AM, Gaydon DS, Khan MR, Chaki AK, Rahman MA, Angeles O, Lia T, Ismail A (2018b) Varietal improvement options for higher rice productivity in salt affected areas using crop modelling. Field Crop Res 229:27–36

    Article  Google Scholar 

  • Rasband WS (1997–2020) ImageJ. U.S. NIH, Bethesda, Maryland. https://imagej.nih.gov/ij/

  • Singh RK, Redoña E, Refuerzo L (2009) Varietal improvement for abiotic stress tolerance in crop plants: special reference to salinity in rice. Springer, Dordrecht

    Google Scholar 

  • Somasundaram S, Bonkowski M, Iijima M (2008a) Functional role of mucilage - border cells: a complex facilitating protozoan effects on plant growth. Plant Prod Sci 11:344–351

    Article  Google Scholar 

  • Somasundaram S, Fukuzono S, Iijima M (2008b) Dynamics of root border cells in rhizosphere soil of Zea mays L.: crushed cells during root penetration, survival in soil, and long term soil compaction effect. Plant Prod Sci 11:440–446

    Article  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology. 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Article  Google Scholar 

  • Verhulst P-F (1838) Notice sur la loi que la population poursuit dans son accroissement. Correspondance Mathématique et Physique 10:113121

    Google Scholar 

  • Wang P, Kang BH (2018) The trans-Golgi sorting and the exocytosis of xylogalacturonan from the root border/border-like cell are conserved among monocot and dicot plant species. Plant Signal Behav 13:e1469362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Li K, Li X (2009) Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J Plant Physiol 166:1637–1645

    Article  CAS  PubMed  Google Scholar 

  • Wen F, VanEtten HD, Tsaprailis G, Hawes MC (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen F, Curlango-Rivera G, Huskey DA, Xiong Z, Hawes MC (2017) Visualization of extracellular DNA released during border cell separation from the root cap. Am J Bot 104:970–978

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Bo C, Shibin G, Tingzhao R (2014) Biological characters of root border cells development in maize (Zea mays). Biotechnology 13:89–98

    Article  CAS  Google Scholar 

  • Zhao X, Misaghi IJ, Hawes MC (2000) Stimulation of border cell production in response to increased carbon dioxide levels. Plant Physiol 122:181–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann D, Westhoff M, Zimmermann G, Gessner P, Gessner A, Wegner LH, Rokitta M, Ache P, Schneider H, Vásquez JA, Kruck W, Shirley S, Jakob P, Hedrich R, Bentrup FW, Bamberg E, Zimmermann U (2007) Foliar water supply of tall trees: evidence for mucilage-facilitated moisture uptake from the atmosphere and the impact on pressure bomb measurements. Protoplasma 232:11–34

    Article  CAS  PubMed  Google Scholar 

  • Zolla G, Heimer YM, Barak S (2010) Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. J Exp Bot 61:211–224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Dr. Supachitra Chadchawan (Chulalongkorn University) for her valuable advice and discussion. The undergraduate students (Prince of Songkla University) visiting the laboratory in a summer training program are acknowledged for their preliminary investigation.

Funding

This work was supported by the Grant for New Scholar (co-funded by TRF and CHE, MRG5280200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anchalee Chaidee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Handling Editor: Peter Nick

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ninmanont, P., Wongchai, C., Pfeiffer, W. et al. Salt stress of two rice varieties: root border cell response and multi-logistic quantification. Protoplasma 258, 1119–1131 (2021). https://doi.org/10.1007/s00709-021-01629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01629-x

Keywords

Navigation