Skip to main content

Advertisement

Log in

Gene expression and localization of arabinogalactan proteins during the development of anther, ovule, and embryo in rice

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Arabinogalactan proteins (AGPs) are hyperglycosylated members of the hydroxyproline-rich glycoprotein (HRGP) superfamily and are widely distributed throughout the plant kingdom. In Oryza sativa (rice), the gene expression and biological function of AGPs only have received minimal research attention. Here, we used qRT-PCR to detect the expression patterns of OsAGP genes in various organs, and found that six genes were preferentially expressed in panicles, three genes were specifically expressed in anthers, and one gene in the stigma. Furthermore, using four specific monoclonal antibodies (JIM8, JIM13, LM2, MAC207), we observed the distribution of AGPs in rice anthers, ovules, and embryos. In anthers, the strong fluorescence signals of AGPs were present in tapetum cells, pollen mother cells, and mature pollens, suggesting that AGPs might be related to the development of anther and pollen. In ovules, signals of AGPs were specifically distributed in the three micropylar megaspores of the tetrad, and with intense signals in the egg cell and synergid cells in the mature embryo sac. This suggests that AGPs may be involved in megaspore determination and double fertilization. In embryos, the immunological signals of AGPs appeared in peripheral and inner cells at the early stage, and in the scutellum, plumule, and radicle at the late stage, indicating that AGPs may be associated with organ differentiation and maturation of embryos. In this study, we revealed that AGPs were widely distributed in rice anthers, ovules, and embryos, which lays a foundation for the functional investigation of AGPs in various processes of sexual reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACs:

archesporial cells

AGPs:

Arabinogalactan proteins

DAP:

Day after pollination

En:

Endothecium

GPI:

Glycosylphosphatidylinositol

GO:

Gene ontology

ML:

Middle layer

MMCs:

Megaspore mother cells

MP:

Mature pollen

NE:

Nucellus epiderm

PCD:

Programmed cell death

PMC:

Pollen/microspore mother cell

PPCs:

Primary parietal cells

PSCs:

Primary sporogenous cells

qRT-PCR:

Quantitative real-time PCR

Ta:

Tapetum

References

  • Abreu I, Oliveira M (2004) Immunolocalisation of arabinogalcatan proteins and pectins in Actinidia deliciosa pollen. Protoplasma 224:123–128

    CAS  PubMed  Google Scholar 

  • Acosta-Garcia G, Vielle-Calzada JP (2004) A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell 16:2614–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21:1453–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu D, Tian L, Wang W, Bobbs S, Herock H, Travers A, Showalter AM (2015) A small multigene hydroxyproline-O-galactosyltransferase family functions in arabinogalactan-protein glycosylation, growth and development in Arabidopsis. BMC Plant Biol 15:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beale KM, Johnson MA (2013) Speed dating, rejection, and finding the perfect mate: advice from flowering plants. Curr Opin Plant Biol 16:590–597

    Article  CAS  PubMed  Google Scholar 

  • Che L, Wang K, Tang D, Liu Q, Chen X, Li Y, Hu Q, Shen Y, Yu H, Gu M, Cheng Z (2014) OsHUS1 facilitates accurate meiotic recombination in rice. PLoS Genet 10:e1004405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coimbra S, Almeida J, Junqueira V, Costa ML, Pereira LG (2007) Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J Exp Bot 58:4027–4035

    Article  CAS  PubMed  Google Scholar 

  • Coimbra S, Costa M, Jones B, Mendes MA, Pereira LG (2009) Pollen grain development is compromised in Arabidopsis agp6 agp11 null mutants. J Exp Bot 60:3133–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demesa-Arévalo E, Vielle-Calzada JP (2013) The classical arabinogalactan protein AGP18 mediates megaspore selection in Arabidopsis. Plant Cell 25(4):1274–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenhaber B, Bork P, Yuan Y, Loeffler G, Eisenhaber F (2000) Automated annotation of GPI anchor sites: case study C. elegans. TIBS 25(7):340–341

    CAS  PubMed  Google Scholar 

  • Gao M, Showalter AM (1999) Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan-protein involvement. Plant J 19:321–331

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Guo X, Cyprys P, Zhang Y, Bleckmann A, Cai L, Huang Q, Luo Y, Gu H, Dresselhaus T, Dong J, Qu LJ (2016) Maternal ENODLs are required for pollen tube reception in Arabidopsis. Curr Biol 26:1–8

    Article  CAS  Google Scholar 

  • Johnson KL, Cassin AM, Lonsdale A, Bacic A, Doblin MS, Schultz CJ (2017) A motif and amino acid bias bioinformatics pipeline to identify hydroxyproline-rich glycoproteins. Plant Physiol 174:886–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung KH, Han MJ, Lee DY, Lee YS, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim YW, Hwang I, An G (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juranić M, Tucker MR, Schultz CJ, Shirley NJ, Taylor JM, Spriggs A, Johnson SD, Bulone V, Koltunow AM (2018) Asexual female gametogenesis involves contact with a sexually fated megaspore in apomictic Hieracium. Plant Physiol 177:1027–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawanabe T, Ariizumi T, Kawai-Yamada M, Uchimiya H, Toriyama K. (2006) Abolition of the tapetum suicide program ruins microsporogenesis. Plant Cell Physiol 47(6):784–787

  • Knox JP, Linstead PJ, Peart J, Cooper C, Roberts K (1991) Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J 1:317–326

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamport DT, Várnai P (2012) Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytol 197:58–64

    Article  CAS  PubMed  Google Scholar 

  • Leszczuk A, Chylińska M, Zięba E, Skrzypek T, Szczuka E, Zdunek A (2018) Structural network of arabinogalactan proteins (AGPs) and pectins in apple fruit during ripening and senescence processes. Plant Sci 275:36–48

    Article  CAS  PubMed  Google Scholar 

  • Levitin B, Richter D, Markovich I, Zik M (2008) Arabinogalactan proteins 6 and 11 are required for stamen and pollen function in Arabidopsis. Plant J 56:351–363

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, Liang W, Zhang D (2010a) Cytochrome P450 family member CYP704B2 catalyzes the omega-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yu M, Geng LL, Zhao J (2010b) The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. Plant J 64:482–497

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Dong H, Zhang F, Qiu L, Wang F, Cao J, Huang L (2014) BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. Ann Bot 113:777–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Dee ZP, Wittich P, Enrico Pè M, Rigola D, Del Buono I, Gorla MS, Kater MM, Colombo L (1999) OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet 25:237–244

    Article  CAS  PubMed  Google Scholar 

  • Ma HL, Zhao J (2010) Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp Bot 61(10):2647–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma HL, Zhao HM, Liu Z, Zhao J (2011) The phytocyanin gene family in rice (Oryza sativa L.): genome-wide identification, classification and transcriptional analysis. PLoS One 6:e25184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma TF, Ma HL, Zhao HM, Qi HD, Zhao J (2014) Identification, characterization, and transcription analysis of xylogen-like arabinogalactan proteins in rice (Oryza sativa L.). BMC Plant Biol 14:299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma YL, Yan CC, Li HM, Wu WT, Liu YX, Wang YQ, Chen Q, Ma H (2017) Bioinformatics prediction and evolution analysis of arabinogalactan proteins in the plant kingdom. Front Plant Sci 8:66

    PubMed  PubMed Central  Google Scholar 

  • McCartney L, Marcus SE, Knox JP (2005) Monoclonal anti-bodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 53:543–546

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi K, Nakata E, Nagato YT, Hattor T (1999) Differential in situ expression of three ABA-regulated genes of rice, RAB16A, REG2 and OSBZ8, during seed development. Plant Cell Physiol 40(4):443–447

    Article  CAS  Google Scholar 

  • Mollet JC, Kim S, Jauh GY, Lord EM (2002) Arabinogalactan proteins, pollen tube growth, and the reversible effects of Yariv phenyl glycoside. Protoplasma 219:89–98

    Article  CAS  PubMed  Google Scholar 

  • Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878

    Article  CAS  PubMed  Google Scholar 

  • Nagato Y (1976) Rhythmic variations of the growth rate in rice embryo revealed by time series analysis. Japan J Breed 26:121–129

    Article  Google Scholar 

  • Nagato Y (1978) Analyses on the growth of embryo in some Gramineae. Japan J Breed 28:97–105

    Article  Google Scholar 

  • Nonomura KI, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N (2003) The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in Rice. Plant Cell 15:1728–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papini A, Mosti S, Brighigna L (1999) Programmed-cell-death events during tapetum development of angiosperms. Protoplasma 207:312–221

    Article  Google Scholar 

  • Peng YB, Zou C, Gong HQ, Bai SN, Xu ZH, Li YQ (2005) Immunolocalization of arabinogalactan protein and pectins in floral buds of cucmber (Cucumis sativus L.) during sex determination. J Integr Plant Biol 47:194–200

    Article  CAS  Google Scholar 

  • Pennell RI, Janniche L, Kjellbom P, Scofield GN, Peart JM, Roberts K (1991) Developmental regulation of a plasma membrane arabinogalactan protein epitope in oilseed rape flowers. Plant Cell 3:1317–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira AM, Lopes AL, Coimbra S (2016a) JAGGER, an AGP essential for persistent synergid degeneration and polytubey block in Arabidopsis. Plant Signal Behav 11:e1209616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira AM, Nobre MS, Pinto SC, Lopes AL, Costa ML, Masiero S, Coimbra S (2016b) “Love is strong, and you’re so sweet”: JAGGER is essential for persistent synergid degeneration and polytubey block in Arabidopsis thaliana. Mol Plant 9:601–614

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Zhao J (2006) Localization of arabinogalactan proteins in egg cells, zygotes, and two-celled proembryos and effects of beta-D-glucosyl Yariv reagent on egg cell fertilization and zygote division in Nicotiana tabacum L. J Exp Bot 57:2061–2074

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Chen D, Zhao J (2007) Localization of arabinogalactan proteins in anther, pollen, and pollen tube of Nicotiana tabacum L. Protoplasma 231:43–53

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Jauh GY, Hepler PK, Lord EM (1998) Effects of Yariv phenyl glycoside on cell wall assembly in the lily pollen tube. Planta 204:450–458

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Hong SK, Tagiri A, Kitano H, Yamamoto N, Nagato Y, Matsuoka M (1996) A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis. Proc Natl Acad Sci U S A 93(15):8117–8122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life 58:1399–1417

    Article  CAS  Google Scholar 

  • Suzuki T, Narciso JO, Zeng W, van de Meene A, Yasutomi M, Takemura S, Lampugnani ER, Dobiln MS, Bacic A, Ishiguro S (2017) KNS4/UPEX1: a type II arabinogalactan β-(1,3)-galactosyltransferase required for pollen exine development. Plant Physiol 173:183–205

    Article  CAS  PubMed  Google Scholar 

  • Thomas NT, Brunak S, Heijne GV, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  Google Scholar 

  • Van Hengel AJ, Van Kammen A, De Vries SC (2002) A relationship between seed development, arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiol Plant 114(4):637–644

    Article  PubMed  Google Scholar 

  • Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, LI RQ, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Zhao J (2012) The cytological changes of tobacco zygote and proembryo cells induced by beta-glucosyl Yariv reagent suggest the involvement of arabinogalactan proteins in cell division and cell plate formation. BMC Plant Biol 12:126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DB, Yang L (2014) Specification of tapetum and microsporocyte cells within the anther. Curr Opin Plant Biol 17:49–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang DS, Liang WQ, Yin CS, Zong J, Gu FW, Zhang DB (2010) OsC6, encoding a lipid transfer protein (LTP), is required for postmeiotic anther development in rice. Plant Physiol 154:149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Ma T, Wang X, Deng Y, Ma H, Zhang R, Zhao J (2015) OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). Plant Cell Environ 38(11):2208–2222

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (2016M590711, 31670312) and the Special Doctorial Program Funds of the Ministry of Education of China (20130141130008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: David McCurdy

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

The expression patterns of reproductive organs-preferential/specific genes. The genes are divided into eight clusters according to their expression patterns: (A) preferentially expressed in Pr-In, Pistil and seeds; (B) preferentially expressed in Pr-In; (C) preferentially expressed in Pr-In, Pistil, Po-In and S1; (D) weakly expressed in reproductive tissues; (E) not expressed in all tissues; (F) preferentially but weakly expressed in Pr-In and seeds; (G) preferentially expressed in Anther and Po-In; (H) preferentially expressed in Pr-In, Po-In and S1, or preferentially expressed in S2, Em and En; (I) preferentially expressed in Pr-In, Po-In, Pistil and S1. The color scale was shown at the bottom. Pr-In, Pre-emergence inflorescence, panicle before emerging from the sheath of the flag leaf; Po-In, Post-emergence inflorescence, panicle after emerging from the sheath of the flag leaf; Anther, anther before pollination; Pistil, pistil before pollination; S1, seed at 5 days after pollination; S2, seed at 10 days after pollination; Em, embryo of seeds at 25 days after pollination; En, endosperm of seeds at 25 days after pollination. (PNG 716 kb)

High Resolution Image (TIF 11849 kb)

Fig. S2

Real-time PCR analysis of reproductive organs-preferentially OsAGP genes. R, 60-day-old roots; L, 60-day-old leaves; S, 60-day-old stems; An, anthers from 28-cm panicles; St, stigmas from 28-cm panicles; Ov, ovaries from 28-cm panicles; P1,0–3 cm panicles; P3, 5-10 cm panicles; P6, 22-30 cm panicles; S1, seeds at 1 day after pollination; S2, seeds at 10 days after pollination; S3, seeds at 30 days after pollination. Error bars indicate standard deviations of independent biological replicates (n = 2 or more). (PNG 1639 kb)

High Resolution Image (TIF 39183 kb)

Fig. S3

Fluorescence microscopy of rice ovaries at different stages labelled with mAbs LM2 and MAC207. (A, B) Rice ovaries at the pre-meiotic stage of macrosporogenesis labelled with LM2 (A) and MAC207 (B), respectively. (C, D) Rice ovaries at the tetrads stage of macrosporogenesis labelled with LM2 (C) and MAC207 (D), respectively. (E, F) Rice ovaries at the binucleate embryo sac stage of macrosporogenesis labelled with LM2 (E) and MAC207 (F), respectively. (G, H) Rice ovaries at the mature embryo sac stage of macrosporogenesis labelled with LM2 (G) and MAC207 (H), respectively. Ap, antipodal cells; E, egg cell; ES, embryo sac; II, inner integument; MMC, macrospore mother cell; MP, micropyle; MT, megaspore tetrad; OI, outer integument; S, synergids. Scale bars = 25 μm in A-F; Scale bars = 50 μm in G and H. (PNG 8900 kb)

High Resolution Image (TIF 48069 kb)

Fig. S4

The reaction of β-GlcY and rice pistils/embryos. (A) 1DAP ovary, there was distribution of AGPs on the stigmas. (B) 3DAP ovary, there was distribution of AGPs on the wilting stigmas. (C) The ventral side of 5 DAP embryo, AGPs were concentrated in the radicle sheath, the embryo sheath, and the top of the embryo. (D) The reverse side of 5 DAP embryo, there was also the distribution of AGPs. (E) The ventral side of 8 DAP embryo, AGPs were distributed in the coleorhiza, the coleoptile, and the epithelial cells of the scutellum. (F) The reverse side of 8 DAP embryo, there was also the distribution of AGPs. (G) The ventral side of 10 DAP embryo, AGPs were weakly distributed in the coleorhiza, the coleoptile, and the epithelial cells of the scutellum. (H) The reverse side of 10 DAP embryo, AGPs can be detected. (I) The ventral side of 15 DAP embryo, the distribution of AGPs was enhanced again, and the distribution was concentrated in the coleorhiza, the coleoptile, and the epithelial cells of the scutellum. (J) The reverse side of 15 DAP embryo, there was also the enhanced distribution of AGPs. (a-j) The controls with β-GlcY-untreated. Scale bars = 1 mm in A, B, a, b, G-J, g-j; Scale bars = 0.25 mm in C, D, c, d; Scale bars = 0.5 mm in E, F, e, f. (PNG 22758 kb)

High Resolution Image (TIF 60996 kb)

Figure S5

Gene ontology (GO) annotations of all detected genes. The histogram shows the result of AGP genes to the secondary classification of GO terms. The left y-axis indicates the percent of genes in a functional term. The right y-axis indicates the number of genes in a functional term. (PNG 684 kb)

High Resolution Image (TIF 58232 kb)

Table S1

Primers used in real-time PCR. (XLSX 63 kb)

Table S2

Microarray analysis of AGP genes in rice. (XLSX 60 kb)

Table S3

RNAseq analysis of AGP genes in rice. (XLSX 15 kb)

Table S4

Informations of 24 sexual organs-preferential/specific AGP genes. (DOCX 26 kb)

Table S5

Protein backbones of 24 sexual organs-preferential/specific OsAGPs. (DOC 62.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Dong, F., Luan, D. et al. Gene expression and localization of arabinogalactan proteins during the development of anther, ovule, and embryo in rice. Protoplasma 256, 909–922 (2019). https://doi.org/10.1007/s00709-019-01349-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01349-3

Keywords

Navigation