Skip to main content
Log in

Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Drought tolerance is a complex trait that is governed by multiple genes. The study presents differential transcriptome analysis between drought-tolerant (Triticum aestivum Cv. C306) and drought-sensitive (Triticum aestivum Cv. WL711) genotypes, using Affymetrix GeneChip® Wheat Genome Array. Both genotypes exhibited diverse global transcriptional responses under control and drought conditions. Pathway analysis suggested significant induction or repression of genes involved in secondary metabolism, nucleic acid synthesis, protein synthesis, and transport in C306, as compared to WL711. Significant up- and downregulation of transcripts for enzymes, hormone metabolism, and stress response pathways were observed in C306 under drought. The elevated expression of plasma membrane intrinsic protein 1 and downregulation of late embryogenesis abundant in the leaf tissues could play an important role in delayed wilting in C306. The other regulatory genes such as MT, FT, AP2, SKP1, ABA2, ARF6, WRKY6, AOS, and LOX2 are involved in defense response in C306 genotype. Additionally, transcripts with unknown functions were identified as differentially expressed, which could participate in drought responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahrazem O, Rubio-Moraga A, Trapero-Mozos A, Climent MF, Gómez-Cadenas A, Gómez-Gómez L (2015) Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation. Plant Sci 234:60–73

    Article  PubMed  CAS  Google Scholar 

  • Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS (2015) ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Front Plant Sci 6:210

    PubMed  PubMed Central  Google Scholar 

  • Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F, De Bellis L, Turchi L, Giuliano G, Cattivelli L (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 10:279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayadi M, Cavez D, Miled N, Chaumont F, Masmoudi K (2011) Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiol Biochem 49:1029–e1039

    Article  PubMed  CAS  Google Scholar 

  • Barta A, Kalyna M, Lorković ZJ (2008) Plant SR proteins and their functions. Curr Top Microbiol Immunol 326:83–102

    PubMed  CAS  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker G, D’Amore R, Allen A, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie W, Hall A, Mayer K, Edwards K, Bevan M, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaturvedi AK, Patel MK, Mishra A, Tiwari V, Jha B (2014) The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco. PLoS One 9:e111379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120–128

    Article  PubMed  CAS  Google Scholar 

  • Chen JY, He LH, Jiang YM, Wang Y, Joyce DC, Ji ZL, Lu WJ (2008) Role of phenylalanine ammonia-lyase in heat pretreatment-induced chilling tolerance in banana fruit. Physiol Plant 132:318–328

    Article  PubMed  CAS  Google Scholar 

  • Chung HS, Koo AJ, Gao X, Jayanty S, Thines B, Jones AD, Howe GA (2008) Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146:952–964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke B, Rahman S (2005) A microarray analysis of wheat grain hardness. Theor Appl Genet 110:1259–1267

    Article  PubMed  CAS  Google Scholar 

  • Csiszár J, Gallé A, Horváth E, Dancsó P, Gombos M, Váry Z, Erdei L, Györgyey J, Tari I (2012) Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress. Plant Physiol Biochem 52:119–129

    Article  PubMed  CAS  Google Scholar 

  • delas Mercedes Dana M, Pintor-Toro JA (2006) Cubero B. Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  CAS  Google Scholar 

  • De Schutter K, Van Damme EJ (2015) Protein-carbohydrate interactions as part of plant defense and animal immunity. Molecules 20:9029–9053

    Article  PubMed  CAS  Google Scholar 

  • Dehghan S, Sadeghi M, Pöppel A, Fischer R, Lakes-Harlan R, Kavousi HR, Vilcinskas A, Rahnamaeian M (2014) Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius. Biosci Rep 34:e00114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devi BS, Kim YJ, Sathiyamoorthy S, Khorolragchaa A, Gayathri S, Parvin S, Yang DU, Selvi SK, Lee OR, Lee S, Yang DC (2011) Classification and characterization of putative cytochrome P450 genes from Panax ginseng C. A. Meyer. Biochemistry (Mosc) 76:1347–1359

    Article  CAS  Google Scholar 

  • Ding F, Cui P, Wang Z, Zhang S, Ali S, Xiong L (2014) Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genomics 15:431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One 7(9):e45117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:64–70

    Article  CAS  Google Scholar 

  • Duque P (2011) A role for SR proteins in plant stress responses. Plant Signal Behav 6:49–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellinger D, Kubigsteltig II (2010) Involvement of DAD1-like lipases in response to salt and osmotic stress in Arabidopsis thaliana. Plant Signal Behav 5:1269–1271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finatto T, de Oliveira AC, Chaparro C, da Maia LC, Farias DR, Woyann LG, Mistura CC, Soares-Bresolin AP, Llauro C, Panaud O, Picault N (2015) Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. Rice (N Y) 8:13

    Article  Google Scholar 

  • Feng XM, Zhao Q, Zhao LL, Qiao Y, Xie XB, Li HF, Yao YX, You CX, Hao YJ (2012) The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol 12:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forment J, Naranjo MA, Roldán M, Serrano R, Vicente O (2002) Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant J 30:511–519

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Obara M, Sato K (2014) Diversification of the plant-specific hybrid glycine-rich protein (HyGRP) genes in cereals. Front Plant Sci 5:489

    Article  PubMed  PubMed Central  Google Scholar 

  • Gharechahi J, Hajirezaei MR, Salekdeh GH (2015) Comparative proteomic analysis of tobacco expressing cyanobacterial flavodoxin and its wild type under drought stress. J Plant Physiol 175:48–58

    Article  PubMed  CAS  Google Scholar 

  • Giordano D, Provenzano S, Ferrandino A, Vitali M, Pagliarani C, Roman F, Cardinale F, Castellarin SD, Schubert A (2016) Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Plant Physiol Biochem 101:23–32

    Article  PubMed  CAS  Google Scholar 

  • Grudkowska M, Zagdańska B (2004) Multifunctional role of plant cysteine proteinases. Acta Biochim Pol 51:609–624

    PubMed  CAS  Google Scholar 

  • Gupta PK, Mir RR, Mohan A, Kumar J Wheat genomics: present status and future prospects. Int J Plant Genom 2008, 2008:896451

  • Harb A, Krishnan A, Ambavaram MM, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu W, Yuan Q, Wang Y, Cai R, Deng X, Wang J, Zhou S, Chen M, Chen L, Huang C (2012) Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol 53:2127–e2141

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Yang H, Yan Y, Wei Y, Tie W, Ding Z, Zuo J, Peng M, Li K (2016) Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci Rep 6:22783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang XS, Wang W, Zhang Q, Liu JH (2013) A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol 162:1178–1194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyun TK, van der Graaff E, Albacete A, Eom SH, Großkinsky DK, Böhm H, Janschek U, Rim Y, Ali WW, Kim SY, Roitsch T (2014) The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance. PLoS One 9:e112946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Jiang Y, Chen R, Dong J, Xu Z, Gao X (2012) Analysis of GDSL lipase (GLIP) family genes in rice (Oryza sativa). Plant Omics J 5:351–358

    CAS  Google Scholar 

  • Jun AS, Liu SH, Koo EH, Do DV, Stark WJ, Gottsch JD (2001) Microarray analysis of gene expression in human donor corneas. Arch Ophthalmol 119:1629–1634

    Article  PubMed  CAS  Google Scholar 

  • Kadam S, Singh K, Shukla S, Goel S, Vikram P, Pawar V, Gaikwad K, Khanna-Chopra R, Singh N (2012) Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. Funct Integr Genomics 12:447–464

    Article  PubMed  CAS  Google Scholar 

  • Kane K, Dahal KP, Badawi MA, Houde M, Hüner NP, Sarhan F (2013) Long-term growth under elevated CO2 suppresses biotic stress genes in non-acclimated, but not cold-acclimated winter wheat. Plant Cell Physiol 54:1751–1768

    Article  PubMed  CAS  Google Scholar 

  • Kayum MA, Jung HJ, Park JI, Ahmed NU, Saha G, Yang TJ, Nou IS (2015) Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa. Mol Gen Genomics 290:79–95

    Article  CAS  Google Scholar 

  • Khong GN, Pati PK, Richaud F, Parizot B, Bidzinski P, Mai CD, Bès M, Bourrié I, Meynard D, Beeckman T, Selvaraj MG, Manabu I, Genga AM, Brugidou C, Nang Do V, Guiderdoni E, Morel JB, Gantet P (2015) OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol 169:2935–2949

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim JY, Park SJ, Jang B, Jung CH, Ahn SJ, Goh CH, Cho K, Han O, Kang H (2007) Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J 50:439–451

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H (2008) Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 55:455–466

    Article  PubMed  CAS  Google Scholar 

  • Kim YW, Jung HJ, Park JI, Hur Y, Nou IS (2015) Response of NBS encoding resistance genes linked to both heat and fungal stress in Brassica oleracea. Plant Physiol Biochem 86:130–136

    Article  PubMed  CAS  Google Scholar 

  • Khanna-Chopra R, Shukla S, Singh K, Kadam S, Singh NK (2012) Characterization of high yielding and drought tolerant rils identified from wheat cross WL711 x C306 RIL mapping population using drought susceptibility index (DSI) as selection criteria. Indian J Plant Genet Resour 26:25–31

    Google Scholar 

  • Kumar G, Kushwaha HR, Panjabi-Sabharwal V, Kumari S, Joshi R, Karan R, Mittal S, Pareek SLS, Pareek A (2012) Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-Pconfers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol 12:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lannoo N, Van Damme EJ (2014) Lectin domains at the frontiers of plant defense. Front Plant Sci 5:397

    PubMed  PubMed Central  Google Scholar 

  • Laudencia-Chingcuanco DL, Stamova BS, You FM, Lazo GR, Beckles DM, Anderson OD (2007) Transcriptional profiling of wheat caryopsis development using cDNA microarrays. Plant Mol Biol 63:651–668

    Article  PubMed  CAS  Google Scholar 

  • Letwin NE, Kafkafi N, Benjamini Y, Mayo C, Frank BC, Luu T, Lee NH, Elmer GI (2006) Combined application of behavior genetics and microarray analysis to identify regional expression themes and gene-behavior associations. J Neurosci 26:5277–5287

    Article  PubMed  CAS  Google Scholar 

  • Li J, Ban L, Wen H, Wang Z, Dzyubenko N, Chapurin V, Gao H, Wang X (2015) An aquaporin protein is associated with drought stress tolerance. Biochem Biophys Res Commun 459:208–213

    Article  PubMed  CAS  Google Scholar 

  • Li YC, Meng FR, Zhang CY, Zhang N, Sun MS, Ren JP, Niu HB, Wang X, Yin J (2012) Comparative analysis of water stress-responsive transcriptomes in drought-susceptible and -tolerant wheat (Triticum aestivum L.) J Plant Biol 55:349–360

    Article  CAS  Google Scholar 

  • Li X, Feng B, Zhang F, Tang Y, Zhang L, Ma L, Zhao C, Gao S (2016) Bioinformatic analyses of subgroup—a members of the wheat bZIP transcription factor family and functional identification of TabZIP174 involved in drought stress response. Front Plant Sci 7:1643

    PubMed  PubMed Central  Google Scholar 

  • Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R (2016) GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.) Sci Rep 6:35040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu C, Fukumoto T, Matsumoto T, Gena P, Frascaria D, Kaneko T, Katsuhara M, Zhong S, Sun X, Zhu Y (2013) Aquaporin OsPIP1; 1 promotes rice salt resistance and seed germination. Plant Physiol Biochem 63:151–e158

    Article  PubMed  CAS  Google Scholar 

  • Magwanga RO, Lu P, Kirungu JN, Lu H, Wang X, Cai X, Zhou Z, Zhang Z, Salih H, Wang K, Liu F (2018) Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet 19(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Bohnert HJ (2007) Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol 8:R49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manoharan RK, Han JS, Vijayakumar H, Subramani B, Thamilarasan SK, Park JI, Nou IS (2016) Molecular and functional characterization of FLOWERING LOCUS T homologs in Allium cepa. Molecules 21:E217

    Article  PubMed  CAS  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Fujita M, Ishida J, Nakashima M, Enju A, Sakurai T, Satou M, Kamiya A, Park P, Kobayashi M, Shinozaki K (2003) Expression profiles of Arabidopsis phospholipase A IIA gene in response to biotic and abiotic stresses. Plant Cell Physiol 44:1246–1252

    Article  PubMed  CAS  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A, Shinozaki K (2004) Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 55:327–342

    Article  PubMed  CAS  Google Scholar 

  • Nezhadahmadi A, Prodhan ZH, Faruq G (2013) Drought tolerance in wheat. Sci World J 1:610721

    Google Scholar 

  • Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio—the analysis and navigation of molecular networks. Bioinformatics 19:2155–2157

    Article  PubMed  CAS  Google Scholar 

  • Opassiri R, Pomthong B, Onkoksoong T, Akiyama T, Esen A, Ketudat Cairns JR (2006) Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 beta-glucosidase. BMC Plant Biol 6:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortega-Amaro MA, Rodríguez-Hernández AA, Rodríguez-Kessler M, Hernández-Lucero E, Rosales-Mendoza S, Ibáñez-Salazar A, Delgado-Sánchez P, Jiménez-Bremont JF (2015) Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance. Front Plant Sci 5:782

    Article  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LS (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy AS, Shad Ali G (2011) Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdiscip Rev RNA 2:875–889

    Article  PubMed  CAS  Google Scholar 

  • Reddy PS, Kavi Kishor PB, Seiler C, Kuhlmann M, Eschen-Lippold L, Lee J, Reddy MK, Sreenivasulu N (2014) Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development. PLoS One 9:e89125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riboni M, Test AR, Galbiati M, Tonelli C, Conti L (2014) Environmental stress and flowering time: the photoperiodic connection. Plant Signal Behav 9:e29036

    Article  PubMed Central  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 28:123–133

    Article  PubMed  CAS  Google Scholar 

  • Roy Choudhury D, Small C, Wang Y, Mueller PR, Rebel VI, Griswold MD, McCarrey JR (2010) Microarray-based analysis of cell-cycle gene expression during spermatogenesis in the mouse. Biol Reprod 83:663–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    Article  PubMed  CAS  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    Article  PubMed  CAS  Google Scholar 

  • Sharp RG, Else MA, Cameron RW, Davies WJ (2009) Water deficits promote flowering in Rhododendron via regulation of pre and post initiation development. Sci Hortic 120:511–517

    Article  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Silva J, Kim YJ, Sukweenadhi J, Rahimi S, Kwon WS, Yang DC (2016) Molecular characterization of 5 chlorophyll a/b-binding protein genes from Panax ginseng Meyer and their expression analysis during abiotic stresses. Photosynthetica 54:446–458

    Article  CAS  Google Scholar 

  • Singh A, Pandey A, Baranwal V, Kapoor S, Pandey GK (2012) Comprehensive expression analysis of rice phospholipase D gene family during abiotic stresses and development. Plant Signal Behav 7:847–855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh A, Mantri S, Sharma M, Chaudhury A, Tuli R, Roy J (2014a) Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions. BMC Genomics 15:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh SP, Jeet R, Kumar J, Shukla V, Srivastava R, Mantri SS, Tuli R (2014b) Comparative transcriptional profiling of two wheat genotypes, with contrasting levels of minerals in grains, shows expression differences during grain filling. PLoS One 9:e111718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sinha SK, Aggarwal PK, Chaturvedi GS, Singh AK, Kailasnathan K (1986) Performance of wheat and triticale cultivars in a variable soil-water environment I. Grain yield stability. Field Crops Res 13:289–299

    Article  Google Scholar 

  • Song M, Xu W, Xiang Y, Jia H, Zhang L, Ma Z (2014) Association of jacalin-related lectins with wheat responses to stresses revealed by transcriptional profiling. Plant Mol Biol 84:95–110

    Article  CAS  Google Scholar 

  • Sreedharan S, Shekhawat UK, Ganapathi TR (2013) Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnol J 11:942–952

    Article  PubMed  CAS  Google Scholar 

  • Staiger D, Brown JW (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25:3640–3656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su Y, Xu L, Fu Z, Yang Y, Guo J, Wang S, Que Y (2014) ScChi, encoding an acidic class III chitinase of sugarcane, confers positive responses to biotic and abiotic stresses in sugarcane. Int J Mol Sci 15:2738–2760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su Y, Xu L, Wang S, Wang Z, Yang Y, Chen Y, Que Y (2015) Identification, phylogeny, and transcript of chitinase family genes in sugarcane. Sci Rep 5:10708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun YG, Wang B, Jin SH, Qu XX, Li YJ, Hou BK (2013) Ectopic expression of Arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. PLoS One 8:e59924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su Z, Ma X, Guo H, Sukiran NL, Guo B, Assmann SM, Ma H (2013) Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. Plant Cell 25:3785–3807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan X, Yan S, Tan R, Zhang Z, Wang Z, Chen J (2014) Characterization and expression of a GDSL-like lipase gene from Brassica napus in Nicotiana benthamiana. Protein J 33:18–23

    Article  PubMed  CAS  Google Scholar 

  • Takenaka Y, Nakano S, Tamoi M, Sakuda S, Fukamizo T (2009) Chitinase gene expression in response to environmental stresses in Arabidopsis thaliana: chitinase inhibitor allosamidin enhances stress tolerance. Biosci Biotechnol Biochem 73:1066–1071

    Article  PubMed  CAS  Google Scholar 

  • Tanabe N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S (2007) Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant Cell Physiol 48:1036–1049

    Article  PubMed  CAS  Google Scholar 

  • Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kaiser BN, Tyerman SD (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149:445–460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vallarino JG, Gainza-Cortés F, Verdugo-Alegría C, González E, Moreno YM (2014) Abiotic stresses differentially affect the expression of O-methyltransferase genes related to methoxypyrazine biosynthesis in seeded and parthenocarpic fruits of Vitis vinifera (L.) Food Chem 154:117–126

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Poole RL, Huttly AK, Toscano-Underwood C, Feeney K, Welham S, Gooding MJ, Mills C, Edwards KJ, Shewry PR, Mitchell RA (2008) Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics 9:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Hu Z, Zhao T, Yang Y, Chen T, Yang M, Yu W, Zhang B (2015) Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum). BMC Genomics 16:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Lin S, Song Q, Li K, Tao H, Huang J, Chen X, Que S, He H (2014) Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study. BMC Genomics 15:344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei K, Zhong X (2014) Non-specific lipid transfer proteins in maize. BMC Plant Biol 14:281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen PF, Chen JY, Wan SB, Kong WF, Zhang P, Wang W, Zhan JC, Pan Q-H, Huang W-D (2008) Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regul 55:1–10

    Article  CAS  Google Scholar 

  • Xu YH, Liu R, Yan L, Liu ZQ, Jiang SC, Shen YY, Wang XF, Zhang DP (2012) Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J Exp Bot 63:1095–1106

    Article  PubMed  CAS  Google Scholar 

  • Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Xu H, Li W, Li L, Sun J, Li Y, Yan Y, Hu Y (2011) Screening and identification of seed-specific genes using digital differential display tools combined with microarray data from common wheat. BMC Genomics 12:513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshimura K, Mori T, Yokoyama K, Koike Y, Tanabe N, Sato N, Takahashi H, Maruta T, Shigeoka S (2011) Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array. Plant Cell Physiol 52:1786–1805

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang M, Takano T, Liu S, Zhang X (2014) Abiotic stress response in yeast and metal-binding ability of a type 2 metallothionein-like protein (PutMT2) from Puccinellia tenuiflora. Mol Biol Rep 41:5839–5849

    Article  PubMed  CAS  Google Scholar 

  • Zang QW, Wang CX, Li XY, Guo ZA, Jing RL, Zhao J, Chang XP (2010) Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat. J Biosci 35:379–388

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Wang C, Liu R, Han Q, Vandeleur RK, Du J, Tyerman S, Shou H (2014) Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1;6 confers salt tolerance. BMC Plant Biol 14:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Yan S, Sun C, Li S, Li J, Xu M, Liu X, Zhang S, Zhao Q, Li Y, Fan Y, Chen R, Wang L (2015) A maize jasmonate Zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis. PLoS One 10:e0121824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

JK and SG acknowledge CSIR for fellowship.

Data access

The microarray raw data (.CEL files) have been deposited at NCBI in the Gene Expression Omnibus (GEO) database under the accession number: GSE87325.

Funding

Authors acknowledge the Department of Biotechnology (DBT), Govt. of India for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

SPS designed the study. JK performed the experiments. SG analyzed the data. JK, SG, and SPS prepared the manuscript. SFK helped in data analysis and critical reading of the manuscript. All authors approved this version of the manuscript.

Corresponding author

Correspondence to Sudhir P. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Bhumi Nath Tripathi

Electronic supplementary material

ESM 1

(JPEG 412 kb)

ESM 2

(DOCX 81 kb)

ESM 3

(XLSX 656 kb)

ESM 4

(DOCX 137 kb)

ESM 5

(DOCX 126 kb)

ESM 6

(XLSX 34 kb)

ESM 7

(XLSX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Gunapati, S., Kianian, S.F. et al. Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance. Protoplasma 255, 1487–1504 (2018). https://doi.org/10.1007/s00709-018-1237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-018-1237-x

Keywords

Navigation