Skip to main content
Log in

Comparative transcriptome and tolerance mechanism analysis in the two contrasting wheat (Triticum aestivum L.) cultivars in response to drought and salinity stresses

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Drought and salinity are the two important and commonly co-occurring abiotic stresses affecting plant growth and productivity worldwide. Here, we compared the genome-wide transcriptome in the two contrasting wheat cultivars (JM22, drought/salt tolerant; YM20, salt sensitive) in response to drought (10% soil moisture) and salinity (100 mM NaCl) stresses. A total of 295 and 94 genes were characterized as drought and salinity responsive according to their different expression profile between JM22 and YM20 in response to drought and salinity stresses, respectively. Of these, 193 and 67 genes, up-regulated in JM22 while down-regulated/unchanged in YM20 and 103 and 27 genes unchanged in JM22 but down-regulated in YM20, under drought and salinity, respectively. Functional enrichment analysis showed that, JM22 recorded higher expression for genes related to ROS detoxification and defense, in response to drought (e.g. phenolic glucosidemalonyltransferase and anthocyanidin 5,3-O-glucosyltransferase-like) and salinity (flavonoid 3′-monooxygenase and heat shock 70 kDa protein). Meanwhile, genes encoding phytohormone and signal transduction (e.g. cytokinin, LRR receptor kinase and LRK14) were prominently up-regulated in JM22 under drought. F-type H+/Na+-transporting ATPase subunit beta, and Ca2+ signal transduction sensors and key regulatory genes responsible, including zinc finger, NAC and WRKY were showed higher expression in JM22 in salinity stress. Further analysis of genotypic difference in transcriptome in response to drought and salinity, we identified 10 DEGs, annotated to cellular process, metabolic process, osmotic regulation, and MAPK signaling pathway, being co-identified as drought and salinity tolerance associated DEGs. Our results suggest that the co-expression of these genes was important for tolerating and adapting to drought and salinity stresses in JM22. This finding increases our knowledge and understanding of the wheat drought and salinity tolerance mechanism and provides molecular bases in breeding potential under drought and salinity stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

ATP:

Adnosine triphosphate

BNS:

Basal nutrient solution

CAM:

Calmodulin

CK:

Cytokinin

DAE:

Day after emergence

DAT:

Day after treatment

qRT-PCR:

Quantitative real time polymerase chain reaction

NaCl:

Sodium chloride

SA:

Salicylic acid

SMC:

Soil moisture content

References

  • Agarwal PK, Gupta K, Jha B (2010) Molecular characterization of the Salicornia brachiata SbMAPKK gene and its expression by abiotic stress. Mol Biol Rep 37:981

    CAS  PubMed  Google Scholar 

  • Agnes G, Csiszar J, Secenji M, Guoth A, Cseuz L, Tari I, Györgyey J, Erdei L (2009) Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit. J Plant Physiol 166:1878–1891

    Google Scholar 

  • Ajithkumar IP, Panneerselvam R (2014) ROS scavenging system, osmotic maintenance, pigment and growth status of Panicumsumatrenseroth under drought stress. Cell Biochem Biophys 68:587–595

    CAS  PubMed  Google Scholar 

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8:15–19

    CAS  PubMed  Google Scholar 

  • An P, Li X, Zheng Y, Matsuura A, Abe J, Eneji AE, Tanimoto E, Inanaga S (2014) Effects of NaCl on root growth and cell wall composition of two soya bean cultivars with contrasting salt tolerance. J Agro Crop Sci 200:212–218

    CAS  Google Scholar 

  • Anderson CM, Wagner TA, Perret M, He ZH, He D, Kohorn BD (2001) WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol 47:197–206

    CAS  PubMed  Google Scholar 

  • Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A (2013) ABA cross talk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4:63

    PubMed  PubMed Central  Google Scholar 

  • Ashraf M, O’leary J (1996) Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress: yield components and ion distribution. J Agron Crop Sci 176:91–101

    Google Scholar 

  • Baek M, Pivetta C, Liu J, Arber SS, Dasen J (2017) Columnar-intrinsic cues shape premotor input specificity in locomotor circuits. Cell Rep 21:867–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69(4):473–488

    CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Bouché N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    PubMed  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water deficit stress in Arabidopsis thaliana. J Exp Bot 55(4007):2331–2341

    CAS  PubMed  Google Scholar 

  • Brown RAM, Epis MR, Horsham JL, Kabir TD, Richardson KL, Leedman PJ (2018) Total RNA extraction from tissues for microRNA and target gene expression analysis: not all kits are created equal. BMC Biotechnol 18:16

    PubMed  PubMed Central  Google Scholar 

  • Cao F, Chen F, Sun H, Zhang G, Chen Z, Wu F (2014) Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genomics 5(1):661

    Google Scholar 

  • Cheng Z, Targolli J, Huang X, Wu R (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10(1–2):71–82

    CAS  Google Scholar 

  • Cheng L, Han M, Yang LM, Yang L, Sun Z, Zhang T (2018) Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellariabaicalensis Georgi under drought stress. Ind Crop Prod 122:473–482

    CAS  Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129(2):661–677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    CAS  PubMed  Google Scholar 

  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19(2):284–295

    CAS  PubMed  Google Scholar 

  • Chrispeels MJ, Maurel C (1994) Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol 105:9–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38(6):1767–1771

    Google Scholar 

  • Conesa A, Gotz S, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation visualization and analysis in functional genomics research. Bioinformat 21:3674–3676

    CAS  Google Scholar 

  • Cruz JA, Harfe B, Radkowski CA, Dann MS, McCarty RE (1995) Molecular dissection of ε subunit of the chloroplast ATP synthase of spinach. Plant Physiol 109:1379–1388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:3004.1-3004.10

    Google Scholar 

  • Duan F, Giehl RFH, Geldner N, Salt DE, von Wirén N (2018) Root zone-specific localization of AMTs determines ammonium transport pathways and nitrogen allocation to shoots. PLoS Biol 16:e2006024

    PubMed  PubMed Central  Google Scholar 

  • Dugasa MT, Cao F, Ibrahim W, Wu F (2019) Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiol Plant 165:134–143

    CAS  PubMed  Google Scholar 

  • Dugasa MT, Chala IG, Wu F (2020) Genotypic difference in secondary metabolism-related enzyme activities and their relative gene expression patterns, osmolyte and plant hormones in wheat. Physiol Plant 168(4):921–933

    CAS  PubMed  Google Scholar 

  • Edreva A, Velikova V, Sonev T, Dagnon S, Gürel A, Aktas L, GeshevaE (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34(1–2):67–78

    Google Scholar 

  • Evers D, Legay S, Lamoureux D, Hausman JF, Hoffmann L, Renaut J (2012) Towards a synthetic view of potato cold and salt stress response by transcriptomic and proteomic analyses. Plant Mol Biol 78:503–514

    CAS  PubMed  Google Scholar 

  • Fan W, Deng G, Wang H, Zhang H, Zhang P (2015) Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato (Ipomoea batatas). Physiol Plant 154(4):560–571

    CAS  PubMed  Google Scholar 

  • Gálvez S, Mérida-García R, Camino C, Borrill P, Abrouk M, Ramírez-González RH, Biyiklioglu S, Amil-Ruiz F, Dorado G, Budak H, Gonzalez-Dugo V, Zarco-Tejada PJ, Appels R, Uauy C, Hernandez P (2019) Hotspots in the genomic architecture of field drought responses in wheat as breeding targets. Funct Integr Genom 19(2):295–309

    Google Scholar 

  • Gao Z, He X, Zhao B, Zhou C, Liang Y, Ge R, Shen Y, Huang Z (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol 51:767–775

    CAS  PubMed  Google Scholar 

  • Gao L, Yan X, Li X, Guo G, Hu Y, Ma W, Yan Y (2011) Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochem 72:1180–91

    CAS  Google Scholar 

  • George S, Venkataraman G, Parida A (2010) A chloroplast localized and auxin-induced glutathione S-transferase fromphreatophyte Prosopis julifloraconfer drought tolerance on tobacco. J Plant Physiol 167:311–318

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Goel A, Taj G, Pandey D, Gupta S, Kumar A (2011) Genome-wide comparative in silico analysis of calcium transporters of rice and sorghum. Genom Proteo Bioinform 9:138–150

    CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    PubMed  PubMed Central  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    CAS  PubMed  Google Scholar 

  • Gosal SS, Wani SH, Kang MS (2009) Biotechnology and drought tolerance. J Crop Improv 23:19–54

    CAS  Google Scholar 

  • Guo Y, Fei Ye F, Sheng Q, Clark T, Samuels DC (2014) Three-stage quality control strategies for DNA re-sequencing data. Brief Bioinform 15(6):879–889

    CAS  PubMed  Google Scholar 

  • Ha S, Vankova R, Yamaguch-Shinozaki K, Shinozaki K, Tran LSP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    CAS  PubMed  Google Scholar 

  • Hamann T (2015) The plant cell wall integrity maintenance mechanism concepts for organization and mode of action. Plant Cell Physiol 56(2):215–223

    CAS  PubMed  Google Scholar 

  • Han YY, Li AX, Li F, Zhao MR, Wang W (2012) Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiol Biochem 54:49–58

    CAS  PubMed  Google Scholar 

  • Hanh HTM, Nha ND, Sik CW (2016) Identification of R2R3-MYB transcription factor (AtMYB13) as a novel substrate of Arabidopsis MPK3 and MPK6. VNU J Sci 32:220–226

    Google Scholar 

  • Harb A, Krishnan A, Ambavaram MM, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–2127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harding SA, Oh SH, Roberts DM (1997) Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J 16:1137–1144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    CAS  PubMed  Google Scholar 

  • He ZH, Rajaram S, Xin ZY (2001) Chapter 3. The Huang Huai facultative wheat zone. In: Huang GZ (ed) A history of wheat breeding in China. DF CIMMYT, Mexico

  • Herridge DF, Atkins CA, Pate JS, Rainbird RM (1978) Allantoin and allantoic acid in the nitrogen economy of the cowpea (Vigna unguiculata L. Walp.). Plant Physiol 62:495–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill R, Bendall FAY (1960) Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature (Lond.) 186:136–137

    CAS  Google Scholar 

  • Hossain Z, Nouri MZ, Komatsu S (2012) Plant cell organelle proteomics in response to abiotic stress. J Proteome Res 11:37–48

    CAS  PubMed  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    PubMed  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Sci 361:eaar7191

  • Jha B, Sharma A, Mishra A (2011) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiatain tobacco for salt tolerance. Mol Biol Rep 38:4823–4832

    CAS  PubMed  Google Scholar 

  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32:1173–1179

    CAS  PubMed  Google Scholar 

  • Johnson MP, Vasilev C, Olsen JD, Hunter CN (2014) Nanodomains of cytochrome b6f and photosystem II complexes in spinach grana thylakoid membranes. Plant Cell 26:3051–3061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jun X, Xin-yu W, Wang-zhen G (2015) The cytochrome P450 superfamily: key players in plant development and defense. J Integ Agric 14(9):1673–1686

    Google Scholar 

  • Kim HS, Park BO, Yoo JH, Jung MS, Lee SM, Han HJ, Kim KE, Kim SH, Lim CO, Yun DJ, Lee SY, Chung WS (2007) Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J Biol Chem 282:36292–36302

    CAS  PubMed  Google Scholar 

  • Kirik V, Kolle K, Miserab S, Baumlein H (1998) Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant J 13:729–742

    CAS  PubMed  Google Scholar 

  • Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–324

    CAS  PubMed  Google Scholar 

  • Kohorn BD, Kobayashi M, Johansen S, Friedman HP, Fischer A, Byers N (2006) Wall-associated kinase 1 (WAK1) is crosslinked in endomembranes, and transport to the cell surface requires correct cell-wall synthesis. J Cell Sci 119:2282–2290

    CAS  PubMed  Google Scholar 

  • Köster P, Wallrad L, Edel KH, Faisal M, Alatar AA, Kudla J (2018) The battle of two ions: Ca2+signalling against Na+ stress. Plant Biol. https://doi.org/10.1111/plb.12704

    Article  PubMed  Google Scholar 

  • Kurusu T, Kuchitsu K, Tada Y (2015) Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front Plant Sci 6:427

    PubMed  PubMed Central  Google Scholar 

  • Lally D, Ingmire P, Tong HY, He ZH (2001) Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology. Plant Cell 13:1317–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped read alignment with Bowtie 2. Nat Methods 9:357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lattanzio V (2013) Phenolic compounds: introduction. In: Ramawat KG, Mérillon JM (eds) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin, pp 1543–1580

    Google Scholar 

  • Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112e166

    Google Scholar 

  • Lee G, Duncan RR, Carrow RN (2004) Salinity tolerance of seashore paspalum ecotypes: shoot growth responses and criteria. HortSci 39:1138–1142

    Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12(1):323–339

    CAS  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    CAS  PubMed  Google Scholar 

  • Lim CW, Yang SH, Shin KH, Lee SC, Kim SH (2015) The AtLRK10L1.2, Arabidopsis, ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. Plant Cell Rep 34(3):447–455

    CAS  PubMed  Google Scholar 

  • Liu J, Zhang F, Zhou J, Chen F, Wang B, Xie X (2012) Phytochrome B controls of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol 78:289–300

    CAS  PubMed  Google Scholar 

  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56:575–589

    CAS  PubMed  Google Scholar 

  • Martinez V, Lauchli A (1991) Phosphorus translocation in salt-stressed cotton. Physiol Plant 83:627–632

    CAS  Google Scholar 

  • Medici A, Laloi M, Atanassova R (2014) Profiling of sugar transporter genes in grapevine coping with water deficit. FEBS Lett 588:3989–3997

    CAS  PubMed  Google Scholar 

  • Meng W, Yu Z, Junye Z, Yongli Z, Shi Y (2017) Effects of supplemental irrigation based on soil moisture levels on photosynthesis, dry matter accumulation, and remobilization in winter wheat (Triticum aestivum L.) cultivars. Plant Prod Sci 20(2):215–226

    CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    CAS  PubMed  Google Scholar 

  • Miranda D, Fischer G, Mewis I, Rohn S, Ulrichs C (2014) Salinity effects on proline accumulation and total antioxidant activity in leaves of the cape gooseberry (Physalis peruviana L.). J Appl Bot Food Qual 87:67–73

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    CAS  PubMed  Google Scholar 

  • Moumeni A, Satoh K, Kondoh H, Asano T, Hosaka A, Venuprasad R, Serraj R, Kumar A, Leung H, Kikuchi S (2011) Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biol 11:174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops-what is the cost? New Phytol 208:668–673

    CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress-response and seed development. Plant Cell Rep 32(7):959–970

    CAS  PubMed  Google Scholar 

  • Nass R, Cunningham KW, Rao R (1997) Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase. J Biol Chem 272:26145–26152

    CAS  PubMed  Google Scholar 

  • Neuhäuser B, Dynowski M, Mayer M, Ludewig U (2007) Regulation of NH4+ transport by essential cross talk between AMT monomers through the carboxyl tails. Plant Physiol 143:1651–1659

    PubMed  PubMed Central  Google Scholar 

  • Ngamhui N, Tantisuwichwong N, Roytrakul S, Zhu YJ, Li QX, Akkasaeng C (2015) Relationship between drought tolerance with activities of antioxidant enzymes in sugarcane. Indian J Plant Physiol 20(2):145–150

    Google Scholar 

  • Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Thibaud MC (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2:83

    PubMed  PubMed Central  Google Scholar 

  • Ohmiya Y, Samejima M, Shiroishi M, Amano Y, Kanda T, Sakai F, Hayashi T (2000) Evidence that endo-1,4-˜beta-glucanases act on cellulose in suspension-cultured poplar cells. Plant J 24:147–158

    CAS  PubMed  Google Scholar 

  • Park CY, Lee JH, Yoo JH, Moon BC, Choi MS, Kang YH, Lee SM, Kim HS, Kang KY, Chung WS, Lim CO, Cho MJ (2005) WRKY group IId transcription factors interact with calmodulin. FEBS Lett 579:1545–1550

    CAS  PubMed  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pehlivan N, Sun L, Jarrett P, Yang X, Mishra N, Chen L, Kadioglu A, Shen G, Hong Z (2016) Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. Plant Cell Physiol 57(5):1069–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    PubMed  PubMed Central  Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA 104:4730–4735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proels RK, Hückelhoven R (2014) Cell-wall invertases, key enzymes in the modulation of plant metabolism during defense responses. Mol Plant Pathol 15(8):858–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjan A, Pathre UV, Ranjan S, Mantri S, Trivedi I, Sawant SV, Tuli R, Jena SN, Asif MH, Koul B, Tuli R, Pathre UV, Sawant SV (2012) Genome wide expression profiling of two accession of G. herbaceum L. in response to drought. BMC Genomics 13:94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reusche M, Klaskova J, Thole K, Truskina J, Novak O, Janz D, Strnad M, Spíchal L, Lipka V, Teichmann T (2013) Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium longisporum. Mol Plant-Microbe Interact 26(8):850–860

    CAS  PubMed  Google Scholar 

  • Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant water uptake and plant water relationships under saline growth conditions. Plant Sci 160:265–672

    CAS  PubMed  Google Scholar 

  • Rudd JJ, Franklin-Tong VE (2001) Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol 151:7–33

    CAS  PubMed  Google Scholar 

  • Sairam R, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci Bangalore 86:407–421

    CAS  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real time PCR data by the comparative C (T) methods. Nat Protoc 3:1101–1108

    CAS  PubMed  Google Scholar 

  • Schulz B (2011) Functional classification of plant plasma membrane transporters. In: Murphy AS, Schulz B, Peer W (eds) The plant plasma membrane. Springer, Berlin, pp 131–176

    Google Scholar 

  • Sharma M, Sunil K, Guptaa SK, Majumdera B, MauryaaV K, Deebaa F, Alam A, Pandey V (2018) Proteomics unravel the regulating role of salicylic acid in soybean under yield limiting drought stress. Plant Physiol Biochem 130:529–541

    CAS  PubMed  Google Scholar 

  • Shewry PR, Hey SJ (2015) The contribution of wheat to human diet and health. Food Energy Secur 4:178–202

    PubMed  PubMed Central  Google Scholar 

  • Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JW Jr (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim Biophys Acta 1763:1147–1160

    CAS  PubMed  Google Scholar 

  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16:13561–13578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol 163(2):471–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XL, Sun M, Luo X, Ding XD, Cai H, Bai X, Liu XF, Zhu YM (2013) Erratum to: a Glycine soja, ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta 237(6):1527–1545

    Google Scholar 

  • Szymanski DB, Liao B, Zielinski RE (1996) Calmodulin isoforms differentially enhance the binding of cauliflower nuclear proteins and recombinant TGA3 to a region derived from the Arabidopsis Cam-3 promoter. Plant Cell 8:1069–1077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E (2006) Stress physiology. In: Taiz L, Zeiger E (eds) Plant physiology. Sinauer Associates, Inc, Sunderland, MA, pp 671–681

    Google Scholar 

  • Tang Q, Feng M (1997) Practical statistics and its DPS statistics software package. China Agriculture Press, Beijing

    Google Scholar 

  • Tardieu F, Tuberosa R (2010) Dissection and modelling of abiotic stress tolerance in plants. Curr Opin Plant Biol 13:206–212

    PubMed  Google Scholar 

  • Tegeder M (2014) Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot 65:1865–1878

    CAS  PubMed  Google Scholar 

  • Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17:2922–2939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Todd CD, Tipton PA, Blevins DG, Piedras P, Pineda M, Polacco JC (2006) Update on ureide degradation in legumes. J Exp Bot 57:5–12

    CAS  PubMed  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    CAS  PubMed  Google Scholar 

  • Wagner TA, Kohorn BD (2001) Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13:303–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    PubMed  Google Scholar 

  • Wang H, Wu Z, Han J, Zheng W, Yang C (2012) Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants. PLoS ONE 7(5):e37817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Zhao J, He X, Sun H, Zhang G, Wu F (2015) Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. BMC Genomics 16:432

    PubMed  PubMed Central  Google Scholar 

  • White PJ (2000) Calcium channels in higher plants. Biochim Biophys Acta 1465:171–189

    CAS  PubMed  Google Scholar 

  • Wieczorek A (2003) Use of biotechnology in agriculture—benefits and risks. Honolulu (HI): University of Hawaii. Biotechno BIO-3. p 6

  • Wu Y, Thorne ET, Sharp RE, Cosgrove DJ (2001) Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiol 126(4):1471–1479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu FB, Zhang GP, Dominy P (2003) Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot 50(1):67–78

    CAS  Google Scholar 

  • Xiao-lan L, Xiang L, Xiao-hong W, Qin P, Ming-sheng Z, Ming-jian R (2020) Biotic and abiotic stress-responsive genes are stimulated to resist drought stress in purple wheat. J I A 19(1):33–50

    Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99(6):4097–4102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8(10):505–512

    CAS  PubMed  Google Scholar 

  • Yang L, Wang C, Guo W, Li X, Lu M, Yu C (2006) Differential expression of cell wall related genes in the elongation zone of rice roots under water deficit. Russ J Plant Physiol 53:390e395

    Google Scholar 

  • Yastreb TO, Kolupaev YuE, Lugovaya AA, Dmitriev AP (2016) Content of osmolytes and flavonoids under salt stress in Arabidopsis thaliana plants defective in jasmonate signaling. Appl Biochem Microbiol 52:210–215

    CAS  Google Scholar 

  • Yoon HK, Kim SG, Kim SY, Park CM (2008) Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis. Mol Cells 25:438–445

    CAS  PubMed  Google Scholar 

  • Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600

    PubMed  PubMed Central  Google Scholar 

  • Zhang Q (2007) Strategies for developing Green Super Rice. Proc Natl Acad Sci USA 104:16402–16409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Sci 279(5349):407–409

    CAS  Google Scholar 

  • Zhang JL, Shi H (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115:1–22

    CAS  PubMed  Google Scholar 

  • Zhao Y, Ai X, Wang M, Xiao L, Xia G (2016) Aputative pyruvate transporter TaBaSS2 positively regulates salinity tolerance in wheat via modulation of AB14 expression. MBC Plant Biol 16:109

    Google Scholar 

  • Zwach PJ, Rashotte AM (2015) Interactions between cytokinin signaling and abiotic stress responses. J Exp Bot 66:4863–4871

    Google Scholar 

Download references

Acknowledgements

We are thanks for the financial support from the Key Research Foundation of Science and Technology Department of Zhejiang Province of China (2016C02050-9-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junmei Wang or Feibo Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Vaclav Motyka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 715 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dugasa, M.T., Feng, X., Wang, NH. et al. Comparative transcriptome and tolerance mechanism analysis in the two contrasting wheat (Triticum aestivum L.) cultivars in response to drought and salinity stresses. Plant Growth Regul 94, 101–114 (2021). https://doi.org/10.1007/s10725-021-00699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00699-4

Keywords

Navigation