Skip to main content

Advertisement

Log in

Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L−1 to 8 mg L−1) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. ‘Jordão’ when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L−1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L−1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L−1 of Fe and/or 8 mg L−1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L−1 Fe + 2 mg L−1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abid M, Hakeem A, Shao Y, Liu Y, Zahoor R, Fan Y, Suyu J, Ata-Ul-Karim ST, Tian Z, Jiang D, Snider JL, Dai T (2018) Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.) Environ Exp Bot 145:12–20

    Article  CAS  Google Scholar 

  • Afzal M, Afzal A, Jones A, Armstrong D (2002) A rapid method for the quantification of GSH and GSSG in biological samples. Methods Mol Biol 186:177–122

    Google Scholar 

  • Ahmed I, Mabood Qazi I, Jamal S (2016) Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov Food Sci Emerg 34:29–43

    Article  CAS  Google Scholar 

  • Ajouri A, Asgedom H, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 167:630–636

    Article  Google Scholar 

  • Audebert A, Sahrawat KL (2000) Mechanisms for iron toxicity tolerance in lowland rice. J Plant Nutr 23:1877–1885

    Article  CAS  Google Scholar 

  • Bailey RL, West KP Jr, Black RE (2015) The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66:22–33

    Article  PubMed  CAS  Google Scholar 

  • Bouain N, Shahzad Z, Rouached A, Khan GA, Berthomieu P, Abdelly YC, Poirier Y, Rouached H (2014) Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. J Exp Bot 65:5725–5741

    Article  PubMed  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  PubMed  CAS  Google Scholar 

  • Burguieres E, Mccue P, Kwon YI, Shetty K (2007) Effect of vitamin C and folic acid on seed vigour response and phenolic-linked antioxidant activity. Bioresour Technol 98:1393–1404

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2000) Role of zinc in protecting plant cells from reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Catálogo Nacional de Variedades (2017) Direção Geral de Alimentação e Veterinária. Agricultura, Florestas e Desenvolvimento Rural, República Portuguesa 73 p. ISSN 0871-0295

    Google Scholar 

  • Cesur A, Tabur S (2011) Chromotoxic effects of exogenous hydrogen peroxide (H2O2) in barley seeds exposed to salt stress. Acta Physiol Plant 33:705–709

    Article  CAS  Google Scholar 

  • Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86:521–553

    Article  PubMed  CAS  Google Scholar 

  • Connolly EL, Guerinot ML (2002) Iron stress in plants. Genome Biol 3(8):1024.1–1024.4

    Article  Google Scholar 

  • Fageria NK, Barbosa Filho MP, Santos AB (2008) Growth and zinc uptake and use efficiency in food crops. Commun Soil Sci Plant Anal 39:2258–2269

    Article  CAS  Google Scholar 

  • Fallah S, Malekzadeh S, Pessarakli M (2018) Seed priming improves seedling emergence and reduces oxidative stress in Nigella sativa under soil moisture stress. J Plant Nutr 41(1):29–40

    Article  CAS  Google Scholar 

  • Gibson RS (2006) Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr Soc 65:51–60

    Article  PubMed  CAS  Google Scholar 

  • Guerinot MA, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition - a review. Am J. Exp Agric 3:374–391

    Article  CAS  Google Scholar 

  • Harris D, Joshi A, Khan PA, Gothkar P, Sodhi PS (1999) On-farm seed priming in semi-arid agriculture: development and evaluation in maize rice and chickpea in India using participatory methods. Exp Agric 35:15–29

    Article  Google Scholar 

  • Harris D, Rashid A, Miraj G, Arif M, Yunas M (2008) ‘On-farm’ seed priming with zinc in chickpea and wheat in Pakistan. Plant Soil 306(1–2):3–10

    Article  CAS  Google Scholar 

  • Hossain Z, Mandal AKA, Shukla R, Datta SK (2004) NaCl stress its chromotoxic effects and antioxidant behavior in roots of Chrysanthemum morifolium Ramat. Plant Sci 166:215–220

    Article  CAS  Google Scholar 

  • Imran M, Mahmood A, Romheld V, Neuman G (2013) Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. Eur J Agron 49:141–148

    Article  CAS  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396

    Article  Google Scholar 

  • Katsuhara M, Kawasaki T (1996) Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant Cell Physiol 37:169–173

    Article  CAS  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    Article  PubMed  CAS  Google Scholar 

  • Lima-Brito J, Guedes-Pinto H, Harrison GE, Heslop-Harrison JS (1996) Chromosome identification and nuclear architecture in triticale x tritordeum F1 hybrids. J Exp Bot 47:583–588

    Article  CAS  Google Scholar 

  • Liu DH, Jiang WS, Wuang C (1996) Effects of Zn2+ on root growth, cell division, and nucleoli of Allium cepa L. J Environ Sci 8:21–27

    CAS  Google Scholar 

  • Lutsenko EK, Marushko EA, Kononenko NV, Leonova TG (2005) Effects of fusicoccin on the early stages of sorghum growth at high NaCl concentrations. Russ J Plant Physiol 52:332–337

    Article  CAS  Google Scholar 

  • Ma T, Duan XH, Yang YY, Yao J, Gao TP (2017) Zinc-alleviating effects on iron-induced phytotoxicity in roots of Triticum aestivum. Biol Plant 61(4):733–740

    Article  CAS  Google Scholar 

  • Manwaring HR, Bligh HFJ, Yadav R (2016) The challenges and opportunities associated with biofortification of pearl millet (Pennisetum glaucum) with elevated levels of grain iron and zinc. Front Plant Sci 7:1944. https://doi.org/10.3389/fpls.2016.01944

    Article  PubMed  PubMed Central  Google Scholar 

  • Marenco RA, Lopes NF (2009) Fisiologia Vegetal: Fotossíntese, respiração, relações hídricas e nutrição mineral, 3rd edn. Marenco RA, Lopes NF (eds), Publisher: Editora Universidade Federal de Viçosa, pp 267–297

  • McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  • Mirshekari B (2012) Seed priming with iron and boron enhances germination and yield of dill (Anethum graveolens). Turk J Agric 36:27–33

    CAS  Google Scholar 

  • Mohsin AU, Ahmad AUH, Farooq M, Ullah S (2014) Influence of zinc application through seed treatment and foliar spray on growth, productivity and grain quality of hybrid maize. J Anim Plant Sci 24(5):1494–1503

    Google Scholar 

  • Montás RL, Claassen N, Amílcar UA, Werner H, Moawad AM (2002) Effect of phosphorus, potassium and zinc fertilizers on iron toxicity in wetland rice (Oryza sativa L.) Plant Soil 239:197–206

    Article  Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109(10):4553–4567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukherjee A, Dhir H, Sharma A (1990) Interaction between essential elements - zinc and iron and metal pollutants - cadmium and lead on cell division and chromosome aberrations in Vallisneria spiralis L. Cytologia 55:405–410

    Article  CAS  Google Scholar 

  • Naidoo G, Chirkoot HD (2004) The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa. Environ Pollut 127:359–366

    Article  PubMed  CAS  Google Scholar 

  • Nawaz F, Ahmad R, Waraich EA, Naeem MS, Shabbir RN (2012) Nutrient uptake, physiological responses, and yield attributes of wheat (Triticum aestivum L.) exposed to early and late drought stress. J Plant Nutr 35:961–974

    Article  CAS  Google Scholar 

  • Oladele EO, Odeigah PGC, Taiwa IA (2013) The genotoxic effect of lead and zinc on bambara groungdnut (Vigna subterranean). Afr J Environ Sci Technol 7:9–13

    CAS  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pekol S, Baloğlu MC, Çelik Altunoğlu Y (2016) Evaluation of genotoxic and cytotoxic effects of environmental stress in wheat species with different ploidy levels. Turk J Biol 40:580–588

    Article  CAS  Google Scholar 

  • Phattarakul N, Cakmak I, Boonchuay P et al (2009) Role of zinc fertilizers in increasing grain zinc concentration and improving grain yield of rice. The Proceedings of the International Plant Nutrition Colloquium XVI. University of California, Davis https://escholarship.org/uc/item/4h59c4sc

    Google Scholar 

  • Rengel Z, Graham RD (1995) Importance of seed zinc content for wheat growth on zinc-deficient soil. I. Vegetative growth. Plant Soil 173:259–266

    Article  CAS  Google Scholar 

  • Saglam S, Day S, Kaya G, Gürbüz A (2010) Hydropriming increases germination of lentil (Lens culinaris Medik.) under water stress. Not Sci Biol 2(2):103–106

    Article  Google Scholar 

  • Sarlach RS, Sharma A, Bains NS (2013) Seed priming in wheat: effect on seed germination, yield parameters and grain yield. Progr Res 8(1):109–112

    Google Scholar 

  • Sharma AD, Rathore SVS, Srinivasan K, Tyagi RK (2014) Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (Abelmoschus esculentus L. Moench). Sci Hortic 165:75–81

    Article  CAS  Google Scholar 

  • Shehab GG, Ahmed OK, El-Beltagi HS (2010) Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.) Not Bot Horti Agrobot Cluj Napoca 38(1):139–148

    CAS  Google Scholar 

  • Sheng H, Zeng J, Liu Y, Wang X, Wang Y, Kang H, Fan X, Sha L, Zhang H, Zhou Y (2016) Sulfur mediated alleviation of Mn toxicity in polish wheat relates to regulating Mn allocation and improving antioxidant system. Front Plant Sci 7:1382. https://doi.org/10.3389/fpls.2016.01382

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheteiwy M, Shen H, Xu J, Guan Y, Song W, Hu J (2017) Seed polyamines metabolism induced by seed priming with spermidine and 5-aminolevulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings. Environ Exp Bot 137:58–72

    Article  CAS  Google Scholar 

  • Sheteiwy MS, Fu Y, Hu Q, Nawaz A, Guan Y, Li Z, Huang Y, Hu J (2016) Seed priming with polyethylene glycol induces antioxidative defense and metabolic regulation of rice under nano-ZnO stress. Environ Sci Pollut Res 23:19989–20002. https://doi.org/10.1007/s11356-016-7170-7

    Article  CAS  Google Scholar 

  • Sheteiwy MS, Guan Y, Cao D, Li J, Nawaz A, Hu Q, Hu W, Ning M, Hu J (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 5:14278. https://doi.org/10.1038/srep14278

    Article  CAS  Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    Article  PubMed  CAS  Google Scholar 

  • Singh SP, Keller B, Gruissem W, Bhullar NK (2017) Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat. Theor Appl Genet 130:283–292

    Article  PubMed  CAS  Google Scholar 

  • Tabur S, Demir K (2009) Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Regul 58:119–123

    Article  CAS  Google Scholar 

  • Teerarak M, Bhinija K, Thitavasanta S, Laosinwattana C (2009) The impact of sodium chloride on root growth, cell division, and interphase silver-stained nucleolar organizer regions (AgNORs) in root tip cells of Allium cepa L. Sci Hortic 121:228–232

    Article  CAS  Google Scholar 

  • Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    Article  PubMed  CAS  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Cakmak I, Hão Y, Singh RP (2014) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci 59:365–372

    Article  CAS  Google Scholar 

  • Wattanakulpakin P, Photchanachai S, Ratanakhanokchai K, Kyu KL, Ritthichai P, Miyagawa S (2012) Hydropriming effects on carbohydrate metabolism, antioxidant enzyme activity and seed vigor of maize (Zea mays L.) Afr J Biotechnol 11:3537–3547

    CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  CAS  Google Scholar 

  • Yan M (2015) Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. S Afr J Bot 99:88–92

    Article  CAS  Google Scholar 

  • Yari L, Aghaalikani M, Khazaei F (2010) Effect of seed priming duration and temperature on seed germination behavior of bread wheat (Triticum aestivum L.). ARPN J Agr Biol Sci 5(1). ©2006-2010 Asian Research Publishing Network (ARPN). [http://www.arpnjournals.com/jabs/research_papers/rp_2010/jabs_0110_166.pdf]

  • Yilmaz A, Ekiz H, Gültekin I, Torun B, Barut H, Karanlik S, Cakmak I (1998) Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. J Plant Nutr 21:2257–2264

    Article  CAS  Google Scholar 

  • Zhang C (2014) Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell 5(10):750–760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, Shewry PR (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49:290–295

    Article  CAS  Google Scholar 

  • Zidan I, Azaizeh H, Neumann PM (1990) Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physiol 93(1):7–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Eng. José Coutinho from the INIAV (Elvas) for kindly provided the seeds of the bread wheat cultivar ‘Jordão’.

Funding

This work was supported by the “Fundação para a Ciência e a Tecnologia” (FCT) [grant number PD/BD/113611/2015] attributed to author I.P. in the scope of the Ph.D. program “Agricultural Production Chains - from fork to farm” [PD/00122/2012].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Lima-Brito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, S., Pavia, I., Carvalho, A. et al. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield. Protoplasma 255, 1179–1194 (2018). https://doi.org/10.1007/s00709-018-1222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-018-1222-4

Keywords

Navigation