Skip to main content
Log in

Changes in rubisco, cysteine-rich proteins and antioxidant system of spinach (Spinacia oleracea L.) due to sulphur deficiency, cadmium stress and their combination

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Sulphur (S) deficiency, cadmium (Cd) toxicity and their combinations are of wide occurrence throughout agricultural lands. We assessed the impact of short-term (2 days) and long-term (4 days) applications of cadmium (40 μg/g soil) on spinach plants grown on sulphur-sufficient (300 μM SO4 2−) and sulphur-deficient (30 μM SO4 2−) soils. Compared with the control (+S and −Cd), oxidative stress was increased by S deficiency (−S and −Cd), cadmium (+S and +Cd) and their combination stress (−S and +Cd) in the order of (S deficiency) < (Cd stress) < (S deficiency and +Cd stress). SDS-PAGE profile of leaf proteins showed a high vulnerability of rubisco large subunit (RbcL) to S deficiency. Rubisco small subunit (RbcS) was particularly sensitive to Cd as well as dual stress (+Cd and −S) but increased with Cd in the presence of S. Cysteine content in low molecular weight proteins/peptide was also affected, showing a significant increase under cadmium treatment. Components of ascorbate-glutathione antioxidant system altered their levels, showing the maximum decline in ascorbate (ASA), dehydroascorbate (DHA), total ascorbate (ASA + DHA, hereafter TA), glutathione (GSH) and total glutathione (GSH + GSSG, hereafter TG) under S deficiency. However, total ascorbate and total glutathione increased, besides a marginal increase in their reduced and oxidized forms, when Cd was applied in the presence of sufficient S. Sulphur supply also helped in increasing the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) under Cd stress. However, their activity suffered by S deficiency and by Cd stress during S deficiency. Each stress declined the contents of soluble protein and photosynthetic pigments; the highest decline in contents of protein and pigments occurred under S deficiency and dual stress respectively. The fresh and dry weights, although affected adversely by every stress, declined most under dual stress. It may be concluded that an optimal level of S is required during Cd stress for better response of SOD, APX, GR and CAT activity, as well as synthesis of cysteine. RbcS is as highly sensitive to S deficiency as RbcL is to Cd stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M (2008) Responses of components of antioxidant system in Mungbean genotypes to cadmium stress. Commun Soil Sci Plant Anal 39:2469–2483

    Article  CAS  Google Scholar 

  • Anjum NA, Umar S, Iqbal M, Khan NA (2011) Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate-glutathione cycle metabolism. Russ J Plant Physiol 58(1):92–99.

    Article  CAS  Google Scholar 

  • Anjum NA, Sofo A, Scopam A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I (2015) Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22(6):4099–4121

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astolfi S, Zuchi S, Passera C (2004) Role of sulphur availability on cadmium-induced changes of nitrogen and sulphur metabolism in maize (Zea mays L.) leaves. J Plant Physiol 161:795–802

    Article  CAS  PubMed  Google Scholar 

  • Astolfi S, Zuchi S, Neumann G, Cesco S, di Toppi LS, Pinton R (2012) Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation. J Exp Bot 3:1241–1250

    Article  Google Scholar 

  • Azevedo RA, Gratão PL, Monteiro CC, Carvalho RF (2012) What is new in the research on cadmium‐induced stress in plants? Food Eng Security 1:133–140

    Article  Google Scholar 

  • Bagheri R, Bashir H, Ahmad J, Baig A, Qureshi MI (2013) Effect of cadmium on leaf proteome of Spinacia oleracea (spinach). Int J Agric Food Sci Technol 4:33–36

    Google Scholar 

  • Bagheri R, Bashir H, Ahmad J, Baig A, Qureshi MI (2014) Effects of cadmium stress on plants. Environmental sustainability: concepts, principles, evidences and innovations., pp 271–277

    Google Scholar 

  • Bashir H, Ahmad J, Bagheri R, Nauman M, Qureshi MI (2013a) Limited sulphur resource forces Arabidopsis thaliana to shift towards non- sulphur tolerance under cadmium stress. Environ Exp Bot 94:19–32

    Article  CAS  Google Scholar 

  • Bashir H, Ahmad J, Bagheri R, Baig A, Qureshi MI (2013b) Thylakoidal pigment-protein complexes: critical requirement of sulphur for proper assemblage and photosynthesis in Arabidopsis thaliana. J Plant Biochem Physiol 1:e110. doi:10.4172/2329-9029.1000e110

    Article  Google Scholar 

  • Bashir H, Qureshi MI, Ibrahim AM, Iqbal M (2015) Chloroplast and photosystems: impact of cadmium and iron deficiency. Photosynthetica 53(3):321–335

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Candiano G, Bruschi M, Musante L, Santucci L et al (2004) Blue silver: a very sensitive colloidal Coomassie G‐250 staining for proteome analysis. Electrophoresis 25:1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Chandler PM, Higgins TJV, Randall PJ, Spencer D (1983) Regulation of legumin levels in developing pea seeds under conditions of sulfur deficiency rates of legumin synthesis and levels of legumin mRNA. Plant Physiol 71:47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Costa JM, Saibo NJM (2011) Recent advances in photosynthesis under drought and salinity. Plant responses to drought and salinity stress. Developments in a post-genomic era 57., p 57

    Google Scholar 

  • Chmielowska-Bąk J, Lefèvre I, Lutts S, Kulik A, Deckert J (2014) Effect of cobalt chloride on soybean seedlings subjected to cadmium stress. Acta Bot Pol 83:201–207

    Article  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8(4):e23681

    Article  PubMed  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Forieri I, Wirtz M, Hell R (2013) Toward new perspectives on the interaction of iron and sulfur metabolism in plants. Front Plant Sci 4:357

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE et al (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 12:909–930

    Article  Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signal Behav 6:215–222

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2011) Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signal Behav 6:293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatata MM, Abdel-Aal EA (2008) Oxidative stress and antioxidant defense mechanisms in response to cadmium treatments. Am-Eurasian J Agric Environ Sci 4:655–669

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hernandez L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 312:195–219

    Article  CAS  PubMed  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn 347:461–465, University of California, Berkeley, CA

    Google Scholar 

  • Kato M, Shimizu S (1985) Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol 26:1291–1301

    Article  CAS  Google Scholar 

  • Khan NA, Samiullah Singh S, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193:435–444

    Article  CAS  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium‐exposed poplar plants. Proteomics 12:2514–2530

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem J 210:899–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (2012) Marschner’s mineral nutrition of higher plants (3rd Edition). P. Marschner (Ed.) Academic Press, Elsevier Ltd.

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon M, Abdel-Ghany SE, Van Hoewyk D, Ye H, Pilon-Smits EA (2006) Biogenesis of iron-sulfur cluster proteins in plastids. Genet Eng 27:101–117

    CAS  Google Scholar 

  • Pivato M, Fabrega-Prats M, Masi A (2014) Low-molecular-weight thiols in plants: functional and analytical implications. Arch Biochem Biophys 560:83–99

    Article  CAS  PubMed  Google Scholar 

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181

    Article  CAS  Google Scholar 

  • Qureshi MI, Qadir S, Zolla L (2007) Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 164:1239–1260

    Article  CAS  PubMed  Google Scholar 

  • Qureshi MI, D’Amici GM, Fagioni M, Rinalducci S, Zolla L (2010) Iron stabilizes thylakoid protein–pigment complexes in Indian mustard during Cd-phytoremediation as revealed by BN-SDS-PAGE and ESI-MS/MS. J Plant Physiol 167:761–770

    Article  CAS  PubMed  Google Scholar 

  • Radić S, Cvjetko P, Glavas K, Roje V, Pevalek‐Kozlina B, Pavlica M (2009) Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedlings induced by thallium. Environ Toxicol Chem 28:189–196

    Article  PubMed  Google Scholar 

  • Rodríguez-Celma J, Rellán-Álvarez R, Abadía A, Abadía J, López-Millán A-F (2010) Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots. J Prot 73:1694–1706

    Article  Google Scholar 

  • Saibo NJ, Lourenço T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623

    Article  CAS  PubMed  Google Scholar 

  • Sen A, Alikamanoglu S (2013) Antioxidant enzyme activities, malondialdehyde, and total phenolic content of PEG-induced hyperhydric leaves in sugar beet tissue culture. In Vitro Cell Dev Bio—Plant 49:396–404

    Article  CAS  Google Scholar 

  • Sorahan T, Lancashire RJ (1997) Lung cancer mortality in a cohort of workers employed at a cadmium recovery plant in the United States: an analysis with detailed job histories. Occup Environ Med 54:194–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touiserkani T, Haddad R (2012) Cadmium-induced stress and antioxidative responses in different Brassica napus cultivars. J Agric Sci Technol 14:929–937

    CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55(35):12

    Google Scholar 

  • Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol 3:1517–1528

    Article  Google Scholar 

  • Zhu XG, Song Q, Ort DR (2012) Elements of a dynamic systems model of canopy photosynthesis. Curr Opin Plant Biol 15:237–244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors are grateful to Jamia Millia Islamia (A Central University) for providing lab and other necessary facilities. RB acknowledges the fellowship support to her by ICCR, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Irfan Qureshi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supporting information

Supplementary data provided.

Additional information

Handling Editor: Bhumi Nath Tripathi

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, R., Ahmad, J., Bashir, H. et al. Changes in rubisco, cysteine-rich proteins and antioxidant system of spinach (Spinacia oleracea L.) due to sulphur deficiency, cadmium stress and their combination. Protoplasma 254, 1031–1043 (2017). https://doi.org/10.1007/s00709-016-1012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1012-9

Keywords

Navigation