Skip to main content
Log in

Integrated role of ROS and Ca+2 in blue light-induced chloroplast avoidance movement in leaves of Hydrilla verticillata (L.f.) Royle

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Directional chloroplast photorelocation is a major physio-biochemical mechanism that allows these organelles to realign themselves intracellularly in response to the intensity of the incident light as an adaptive response. Signaling processes involved in blue light (BL)-dependent chloroplast movements were investigated in Hydrilla verticillata (L.f.) Royle leaves. Treatments with antagonists of actin filaments [2,3,5-triiodobenzoic acid (TIBA)] and microtubules (oryzalin) revealed that actin filaments, but not microtubules, play a pivotal role in chloroplast movement. Involvement of reactive oxygen species (ROS) in controlling chloroplast avoidance movement has been demonstrated, as exogenous H2O2 not only accelerated chloroplast avoidance but also could induce chloroplast avoidance even in weak blue light (WBL). Further support came from experiments with different ROS scavengers, i.e., dimethylthiourea (DMTU), KI, and CuCl2, which inhibited chloroplast avoidance, and from ROS localization using specific stains. Such avoidance was also partially inhibited by ZnCl2, an inhibitor of NADPH oxidase (NOX) as well as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a photosynthetic electron transport chain (ETC) inhibitor at PS II. However, methyl viologen (MV), a PS I ETC inhibitor, rather accelerated avoidance response. Exogenous calcium (Ca+2) induced avoidance even in WBL while inhibited chloroplast accumulation partially. On the other hand, chloroplast movements (both accumulation and avoidance) were blocked by Ca+2 antagonists, La3+ (inhibitor of plasma membrane Ca+2 channel) and ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA, Ca+2 chelator) while LiCl that affects Ca+2 release from endosomal compartments did not show any effect. A model on integrated role of ROS and Ca+2 (influx from apolastic space) in actin-mediated chloroplast avoidance has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aggarwal C, Łabuz J, Gabryś H (2013) Phosphoinositides play differential roles in regulating phototropin1- and phototropin2- mediated chloroplast movements in Arabidopsis. PLoS One 8(2):e55393. doi:10.1371/journal.pone.0055393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H (2012) Blue light signalling in chloroplast movements. J Exp Bot 63(4):1559–1574. doi:10.1093/jxb/err 429

    Article  PubMed  Google Scholar 

  • Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840(5):1596–1604. doi:10.1016/j.bbagen.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  CAS  PubMed  Google Scholar 

  • Causin HF, Roqueiro G, Petrillo E, Láinez V, Pena LB, Marchetti CF, Gallego SM, Maldonado SI (2012) The control of root growth by reactive oxygen species in Salix nigra Marsh. seedlings. Plant Sci 183:197–205. doi:10.1016/j.plantsci.2011.08.012

    Article  CAS  PubMed  Google Scholar 

  • Chen YH, Kao CH (2012) Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice. Protoplasma 249:187–195. doi:10.1007/s00709-011-0277-2

    Article  CAS  PubMed  Google Scholar 

  • Chen DH, Acharya BR, Liu W, Zhang W (2013) Interaction between calcium and actin in guard cell and pollen signaling networks. Plants 2:615–634. doi:10.3390/plants2040615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hašek J, Paciorek T, Petrášek J, Seifertová D, Tejos R, Meisel LA, Zažimalová E, Gadella TWJ, Stierhof Y-D, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Frimal J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci U S A 105(11):4489–4494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143(1):81–96

    Article  Google Scholar 

  • Gordeeva A, Zvyagilskaya R, Labbas Y (2003) Cross-talk between reactive oxygen species and calcium in living cells. Biochem (Mosc) 68:1077–1080

    Article  CAS  Google Scholar 

  • Helper PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155. doi:10.1105/tpc.105.032508

    Article  Google Scholar 

  • Hu SQ, Brady SR, Kovar DR, Staiger CJ, Clark GB, Roux SJ, Muday GK (2000) Identification of plant actin binding proteins by F-actin affinity chromatography. Plant J 24:127–137

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhang J (2003) Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. Plant Cell Environ 26:929–939

    Article  CAS  PubMed  Google Scholar 

  • Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada M (2009) Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc Natl Acad Sci U S A 106(31):13106–13111. doi:10.1073/pnas.0906250106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy MK, Meagher RB (1999) Actin-organelle interaction: association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil Cytoskeleton 44:110–118

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  CAS  PubMed  Google Scholar 

  • Kocsy G, Tari I, Vanková R, Zechmann B, Gulyás Z, Poór P, Galiba G (2013) Redox control of plant growth and development. Plant Sci 211:77–91

    Article  CAS  PubMed  Google Scholar 

  • Kong S-G, Wada M (2011) New insights into dynamic actin-based chloroplast photorelocation movement. Mol Plant 4(5):771–781

    Article  CAS  PubMed  Google Scholar 

  • Kong S-G, Wada M (2014) Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. Biochim Biophys Acta 1837:522–530. doi:10.1016/j.bbabio.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  • Langhans M, Niemes S, Pimpl P, Robinson DG (2009) Oryzalin bodies: in addition to its anti-microtubule properties, the dinitroaniline herbicide oryzalin causes nodulation of the endoplasmic reticulum. Protoplasma 236(1–4):73–84. doi:10.1007/s00709-009-0059-2

    Article  CAS  PubMed  Google Scholar 

  • Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen species intermediates (O2˙, H2O2 and ˙OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123. doi:10.1104/pp. 104.044784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazars C, Thuleau P, Lamotte O, Bourque S (2010) Cross-talk between ROS and calcium in regulation of nuclear activities. Mol Plant 3(4):706–718

    Article  CAS  PubMed  Google Scholar 

  • Moldovan L, Moldovan NI, Sohn RH, Parikh SA, Goldscmidt-Clermont PJ (2000) Redox changes of cultured endothelial cells and actin dynamics. Circ Res 86:549–557

    Article  CAS  PubMed  Google Scholar 

  • Moldovan L, Mythreye K, Goldscmidt-Clermont PJ, Satterwhite LL (2006) Reactive oxygen species in vascular endothelial cell motility. Roles of NADP(H) oxidase and Rac1. Cardiovasc Res 71:236–246

    Article  CAS  PubMed  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca+2 channels. A signaling mechanism in polar growth, hormone transduction, stress signaling and hypothetically mechanotransduction. Plant Physiol 135(2):702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mubarakshina MM, Ivanov BN (2010) The production and scavenging of reactive oxygen species in the plastoquinone pool of chloroplast thylakoid membranes. Physiol Plant 140:103–110

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux P, Ball L, Escobar C, Karpinska B, Creissen G, Karpinski S (2000) Are diverse signalling pathways integrated in the regulation of Arabidopsis antioxidant defence gene expression in response to excess excitation energy? Philos Trans R Soc Lond B 355:1531–1540

    Article  CAS  Google Scholar 

  • Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A, Wada M (2003) Chloroplast unusual positioning 1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa K, Yamasato A, Kong S-G, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 148:829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe K, Osakabe Y (2012) Plant light stress. In: Robinson SA (ed) Encyclopaedia of life sciences. Nature Publishing Group, London

    Google Scholar 

  • Petrášek J, Černá A, Schwarzerová K, Elčkner M, Morris DA, Zažímalová E (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131:254–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, del Rio LA, Sanalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide and calcium. Plant Physiol 150:229–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sairam RK, Dharmar K, Lekshmy S, Chinnusamy V (2011) Expression of antioxidant defense genes in mung bean (Vigna radiata L.) roots under water-logging is associated with hypoxia tolerance. Acta Physiol Plant 33:735–744

    Article  CAS  Google Scholar 

  • Samardakiewicz S, Krzeszowiec-Jeleń W, Bednarski W, Jankowski A, Suski S, Gabryś H, Woźny A (2015) Pb-induced avoidance like chloroplast movements in fronds of Lemna trisulca L. PLoS One 10(2):e0116757. doi:10.1371/journal.pone.0116757

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Wada M, Kadota A (2001) Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J Cell Sci 114:269–279

    CAS  PubMed  Google Scholar 

  • Scanlon MJ (2003) The polar auxin transport inhibitor N-1-Naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize. Plant Physiol 133(2):597–605. doi:10.1104/pp. 103.026880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Shapiguzov A, Vainonen JP, Wrzaczek M, Kangasjärvi J (2012) ROS-talk—how the apoplast, the chloroplast, and the nucleus get the message through. Front Plant Sci 3:1–9. doi:10.3389/fpls.2012.00292

    Article  Google Scholar 

  • Sinclair A, Schenkel M, Mathur J (2009) Signaling to the actin cytoskeleton during cell morphogenesis and patterning. In: Baluška F, Mancuso S (eds) Signaling in plants. Springer, Berlin, pp 135–152

    Chapter  Google Scholar 

  • Singh KL, Chaudhuri A, Kar RK (2014) Superoxide and its metabolism during germination and axis growth of Vigna radiata (L.) Wilczek seeds. Plant Signal Behav. doi:10.4161/psb.29278

    Google Scholar 

  • Singh KL, Chaudhuri A, Kar RK (2015) Role of peroxidase activity and Ca2+ in axis growth during seed germination. Planta. doi:10.1007/s00425-015-2338-9

    Google Scholar 

  • Suetsugu N, Wada M (2007) Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem 388(9):927–935

    Article  CAS  PubMed  Google Scholar 

  • Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQP, Kadota A, Wada M (2010) Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107(19):8860–8865. doi:10.1073/pnas.0912773107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sztatelman O, Waloszek A, Banaś AK, Gabryś H (2010) Photoprotective function of chloroplast avoidance movement: in vivo chlorophyll fluorescence study. J Plant Physiol 167:709–716

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy A (2015) Plant physiology and development. Sinauer, Sunderland, Massachusetts, USA

  • Takagi S (2003) Actin-based photo-orientation movement of chloroplasts in plant cells. J Exp Biol 206:1963–1969. doi:10.1242/jeb.00215

    Article  CAS  PubMed  Google Scholar 

  • Takemiya A, Inoue SI, Doi M, Kinoshita T, Shimazaki KI (2005) Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17:1120–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tlałka M, Fricker M (1999) The role of calcium in blue-light-dependent chloroplast movement in Lemna trisulca L. Plant J 20:461–473

    Article  PubMed  Google Scholar 

  • Tuteja N (2009) Integrated calcium signalling in plants. In: Baluška F, Mancuso S (eds) Signaling in plants. Springer, Berlin, pp 29–49

    Chapter  Google Scholar 

  • Usami H, Maeda T, Fujii Y, Oikawa K, Takahashi F, Kagawa T, Wada M, Kasahara M (2012) CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens. Planta 236:1889–1897. doi:10.1007/s00425-012-1735-6

    Article  CAS  PubMed  Google Scholar 

  • Wada M (2013) Chloroplast movement. Plant Sci 210:177–182. doi:10.1016/j.plantsci.2013.05.016

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    Article  CAS  PubMed  Google Scholar 

  • Wen F, Xing D, Zhang L (2008) Hydrogen peroxide is involved in high blue light-induced chloroplast avoidance movements in Arabidopsis. J Exp Bot 59(10):2891–2901. doi:10.1093/jxb/ern147

    Article  CAS  PubMed  Google Scholar 

  • Zurbriggen MD, Carrillo N, Hajirezaei M-R (2010) ROS signaling in the hypersensitive response: when, where and what for? Plant Signal Behav 5(4):393–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rup Kumar Kar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Jaideep Mathur

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, A., Kar, R.K. Integrated role of ROS and Ca+2 in blue light-induced chloroplast avoidance movement in leaves of Hydrilla verticillata (L.f.) Royle. Protoplasma 253, 1529–1539 (2016). https://doi.org/10.1007/s00709-015-0911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0911-5

Keywords

Navigation