Skip to main content

Signaling to the Actin Cytoskeleton During Cell Morphogenesis and Patterning

  • Chapter
  • First Online:
Signaling in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

The plant is a supracellular organism whose cells are locked in position through shared walls but maintain apoplastic and symplastic connectivity. Their fixed position places each cell into a unique niche within the organism. Consequently, every environmental cue is perceived slightly differently by each cell. The response of each plant cell varies accordingly. Thus, plant growth and development reflect a progression of accommodative arrangements reached between constituent cells. In recent years the actin cytoskeleton, through its direct involvement in subcellular compartmentation, organelle and vesicle trafficking, and structural reinforcement, has emerged as a key player during accommodative growth and development. Here, using salient actin-cytoskeleton-associated cellular phenotypes, we elaborate upon the molecular-cell biological machinery involved in organizing the actin cytoskeleton during cell shape development in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amann KJ, Pollard TD (2001) The ARP2/3 complex nucleates actin filament branches from the sides of pre-existing filaments. Nat Cell Biol 3:306–310

    Article  PubMed  CAS  Google Scholar 

  • Ayscough KR (1998) In vivo functions of actin-binding proteins. Curr Opin Cell Biol 10:102–111

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Jasik J, Edelmann HG, Salajová T, Volkmann D (2001) Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent. Dev Biol 231:113–124

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Wojtaszek P, Volkmann D, Barlow P (2003) The architecture of polarized cell growth: the unique status of elongating plant cells. Bioessays 25:569–576

    Article  PubMed  CAS  Google Scholar 

  • Basu D, Le J, El-Essal Sel-D, Huang S, Zhang C, Mallery EL, Koliantz G, Staiger CJ, Szymanski DB (2005) DISTORTED3/SCAR2 is a putative arabidopsis WAVE complex subunit that activates the ARP2/3 complex and is required for epidermal morphogenesis. Plant Cell 17:502–524

    Article  CAS  Google Scholar 

  • Basu D, Le J, Zakharova T, Mallery EL, Szymanski DB (2008) A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. Proc Natl Acad Sci U S A 105:4044–4049

    Article  PubMed  Google Scholar 

  • Berken A, Thomas C, Wittinghofer A (2005) A new family of RhoGEFs activates the Rop molecular switch in plants. Nature 436:1176–1178

    Article  PubMed  CAS  Google Scholar 

  • Bischoff F, Vahlkamp L, Molendijk A, Palme K (2000) Localization of AtROP4 and AtROP6 and interaction with the guanine nucleotide dissociation inhibitor AtRhoGDI1 from Arabidopsis. Plant Mol Biol 42:515–530

    Article  PubMed  CAS  Google Scholar 

  • Bisgrove SR (2007) Cytoskeleton and early development in Fucoid algae. J Integr Plant Biol 49:1192–1198

    Article  Google Scholar 

  • Blancaflor EB (2000) Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize (Zea mays L.). J Plant Growth Regul 19:406–410

    PubMed  CAS  Google Scholar 

  • Boldogh IR, Yang HC, Nowakowski WD, Karmon SL, Hays LG, Yates JR3rd, Pon LA (2001) ARP2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc Natl Acad Sci U S A 98:3162–3167

    Article  PubMed  CAS  Google Scholar 

  • Bothwell JH, Ng CK (2005) The evolution of Ca2+ signalling in photosynthetic eukaryotes. New Phytol 166:21–38

    Article  PubMed  CAS  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluska F, Van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:413–419

    Article  PubMed  CAS  Google Scholar 

  • Bretscher A, Weber K (1980) Villin is a major protein of the microvillus cystoskeleton which binds both G and F actin in a calcium-dependent manner. Cell 20:839–847

    Article  PubMed  CAS  Google Scholar 

  • Brownlee C, Bouget FY (1998) Polarity determination in Fucus: from zygote to multicellular embryo. Semin Cell Dev Biol 9:179–185

    Article  PubMed  CAS  Google Scholar 

  • Cárdenas L, Lovy-Wheeler A, Kunkel JG, Hepler PK (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol 146:1611–1621

    Article  PubMed  CAS  Google Scholar 

  • Carol RJ, Dolan L (2006) The role of reactive oxygen species in cell growth: lessons from root hairs. J Exp Bot 57:1829–1834

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry F, Guérin C, von Witsch M, Blanchoin L, Staiger CJ (2007) Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin. Mol Biol Cell 18:3002–3014

    Article  PubMed  CAS  Google Scholar 

  • Chen JG (2008) Heterotrimeric G-proteins in plant development. Front Biosci 13:3321–3333

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu H, Cheung AY (2002) The regulation of actin organization by actin depolymerizing factor in elongating pollen tubes. Plant Cell 14:2175–2190

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Wu HM (2004) Over-expression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell 16:257–269

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Chen CY-, Tao L-, Andreyeva T, Twell D, Wu H- (2003) Regulation of pollen tube growth by Rac-like GTPases. J Exp Bot 54:73–81

    Article  PubMed  CAS  Google Scholar 

  • Coelho SM, Brownlee C, Bothwell JH (2008) A tip-high, Ca2+-interdependent, reactive oxygen species gradient is associated with polarized growth in Fucus serratus zygotes. Planta 227:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Collings DA, Lill AW, Himmelspach R, Wasteneys GO (2006) Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana. New Phytol 170:275–290

    Article  PubMed  CAS  Google Scholar 

  • Cove D (2005) The moss Physcomitrella patens. Annu Rev Genet 39:339–358

    Article  PubMed  CAS  Google Scholar 

  • Day IS, Reddy VS, Shad Ali G, Reddy AS (2002) Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol 3(10): 1–24

    Article  Google Scholar 

  • Deeks MJ, Cvrcková F, Machesky LM, Mikitová V, Ketelaar T, Zársky V, Davies B, Hussey PJ (2005) Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol 168:529–540

    Article  PubMed  CAS  Google Scholar 

  • Deeks MJ, Rodrigues C, Dimmock S, Ketelaar T, Maciver SK, Malhó R, Hussey PJ (2007) Arabidopsis CAP1 - a key regulator of actin organisation and development. J Cell Sci 120:2609–2618

    Article  PubMed  CAS  Google Scholar 

  • Dhanoa PK, Sinclair AM, Mullen RT, Mathur J (2006) Illuminating subcellular structures and dynamics in plants: a fluorescent protein toolbox. Can J Bot 84:515–522

    Article  CAS  Google Scholar 

  • Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527

    Article  PubMed  CAS  Google Scholar 

  • Djakovic S, Dyachok J, Burke M, Frank MJ, Smith LG (2006) BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 133:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Dong CH, Kost B, Xia G, Chua NH (2001) Molecular identification and characterization of the Arabidopsis AtADF1, AtADFS and AtADF6 genes. Plant Mol Biol 45:517–527

    Article  PubMed  CAS  Google Scholar 

  • Drøbak BK, Franklin-Tong VE, Staiger CJ (2004) The role of the actin cytoskeleton in plant cell signaling. New Phytol 163:13–30

    Article  CAS  Google Scholar 

  • Felle HH, Hepler PK (1997) The cytosolic Ca2+ concentration gradient of Sinapis alba root hairs as revealed by Ca2+-selective microelectrode tests and Fura-dextran ratio imaging. Plant Physiol 114:39–45

    PubMed  CAS  Google Scholar 

  • Foissner I, Wasteneys GO (2007) Wide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cells. Plant Cell Physiol 48:585–597

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442–446

    Article  PubMed  CAS  Google Scholar 

  • Frank MJ, Smith LG (2002) A small, novel protein highly conserved in plants and animals promotes the polarized growth and division of maize leaf epidermal cells. Curr Biol 12:849–853

    Article  PubMed  CAS  Google Scholar 

  • Frank M, Egile C, Dyachok J, Djakovic S, Nolasco M, Li R, Smith LG (2004) Activation of ARP2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE. Proc Natl Acad Sci U S A 101:16379–16384

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Li H, Yang Z (2002) The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14:777–794

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700

    Article  PubMed  CAS  Google Scholar 

  • Geitmann A (2006) Plant and fungal cytomechanics: quantifying and modeling cellular architecture. Can J Bot 84:581–593

    Article  CAS  Google Scholar 

  • Geitmann A, Emons AM (2000) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198:218–245

    Article  PubMed  CAS  Google Scholar 

  • Gouin E, Welch MD, Cossart P (2005) Actin-based motility of intracellular pathogens. Curr Opin Microbiol 8:35–45

    Article  PubMed  CAS  Google Scholar 

  • Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726

    Article  PubMed  CAS  Google Scholar 

  • Grunt M, Zarsky V, Cvrckova F (2008) Roots of Angiosperm formins: the evolutionary history of plant FH2 domain-containing proteins. BMC Evol Biol 8:115

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Wang Z, Yang Z (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol 7:527–536

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z (2005) A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol. 169:127–138

    Article  PubMed  CAS  Google Scholar 

  • Hable WE, Kropf DL (2005) The ARP2/3 complex nucleates actin arrays during zygote polarity establishment and growth. Cell Motil Cytoskel 61:9–20

    Article  CAS  Google Scholar 

  • Hable WE, Miller NR, Kropf DL (2003) Polarity establishment requires dynamic actin in fucoid zygotes. Protoplasma 221:193–204

    PubMed  CAS  Google Scholar 

  • Harris HE, Weeds AG (1983) Plasma actin depolymerizing factor has both calcium-dependent and calcium-independent effects on actin. Biochemistry 22:2728–2741

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427

    Article  PubMed  CAS  Google Scholar 

  • Higgs HN, Pollard TD (2001) Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu Rev Biochem 70:649–676

    Article  PubMed  CAS  Google Scholar 

  • Hirt H (2000) MAP kinases in plant signal transduction. Results Probl Cell Differ 27:1–9

    PubMed  CAS  Google Scholar 

  • Hong-Bo S, Li-Ye C, Ming-An S (2008) Calcium as a versatile plant signal transducer under soil water stress. Bioessays 30:634–641

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Blanchoin L, Kovar DR, Staiger CJ (2003) Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J Biol Chem 278:44832–44842

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Blanchoin L, Chaudhry F, Franklin-Tong VE, Staiger CJ (2004) A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J Biol Chem 279:23364–23375

    Article  PubMed  CAS  Google Scholar 

  • Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol 57:109–112

    Article  PubMed  CAS  Google Scholar 

  • Ingouff M, Fitz Gerald JN, Guérin C, Robert H, Sørensen MB, Van Damme D, Geelen D, Blanchoin L, Berger F (2005) Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol 7:374–380

    Article  PubMed  CAS  Google Scholar 

  • Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14:763–776

    Article  PubMed  CAS  Google Scholar 

  • Jones MA, Raymond MJ, Yang Z, Smirnoff N (2007) NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J Exp Bot 58:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Kakimoto T, Shibaoka H (1987) Actin filaments and microtubules in the preprophase band and phragmoplast of tobacco cells. Protoplasma 140:151–156

    Article  Google Scholar 

  • Kandasamy MK, Meagher RB (1999) Actin-organelle interaction: association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil Cytoskel 44:110–118

    Article  CAS  Google Scholar 

  • Ketelaar T, Allwood EG, Anthony R, Voigt B, Menzel D, Hussey PJ (2004) The actin-interacting protein AIP1 is essential for actin organization and plant development. Curr Biol 14:145–149

    Article  PubMed  CAS  Google Scholar 

  • Klahre U, Friederich E, Kost B, Louvard D, Chua NH (2000) Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol 122:35–48

    Article  PubMed  CAS  Google Scholar 

  • Kost B (2008) Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 18:119–127

    Article  PubMed  CAS  Google Scholar 

  • Kost B, Spielhofer P, Chua NH (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16:393–401

    Article  PubMed  CAS  Google Scholar 

  • Kovar DR, Drobak BK, Staiger CJ (2000a) Maize profilin isoforms are functionally distinct. Plant Cell 12:583–598

    Article  CAS  Google Scholar 

  • Kovar DR, Staiger CJ, Weaver EA, McCurdy DW (2000b) AtFim1 is an actin filament crosslinking protein from Arabidopsis thaliana. Plant J 24:625–636

    Article  CAS  Google Scholar 

  • Kroeger JH, Geitmann A, Grant M (2008) Model for calcium dependent oscillatory growth in pollen tubes. J Theor Biol 253:363–374

    Article  PubMed  CAS  Google Scholar 

  • Kropf DL, Berge SK, Quatrano RS (1989) Actin localization during Fucus embryogenesis. Plant Cell 1:191–200

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed  CAS  Google Scholar 

  • Le J, Mallery EL, Zhang C, Brankle S, Szymanski DB (2006) Arabidopsis BRICK1/HSPC300 is an essential WAVE-complex subunit that selectively stabilizes the ARP2/3 activator SCAR2. Curr Biol 16:895–901

    Article  PubMed  CAS  Google Scholar 

  • Li H, Lin Y, Heath RM, Zhu MX, Yang Z (1999) Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11:1731–1742

    Article  PubMed  CAS  Google Scholar 

  • Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221:95–104

    Article  PubMed  CAS  Google Scholar 

  • Mathur J (2004) Cell shape development in plants. Trends Plant Sci 9:583–590

    Article  PubMed  CAS  Google Scholar 

  • Mathur J (2005a) The ARP2/3 complex: giving plant cells a leading edge. Bioessays 27:377–387

    Article  CAS  Google Scholar 

  • Mathur J (2005b) Conservation of boundary extension mechanisms between plants and animals. J Cell Biol 168:679–682

    Article  CAS  Google Scholar 

  • Mathur J (2006a) Local interactions shape plant cells. Curr Opin Cell Biol 18:40–46

    Article  CAS  Google Scholar 

  • Mathur J (2006b) Trichome cell morphogenesis in Arabidopsis: a continuum of cellular decisions. Can J Bot 84:581–593

    Article  CAS  Google Scholar 

  • Mathur J, Spielhofer P, Kost B, Chua N (1999) The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126:5559–5568

    PubMed  CAS  Google Scholar 

  • Mathur J, Mathur N, Kirik V, Kernebeck B, Srinivas BP, Hülskamp M (2003a) Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 130:3137–3146

    Article  CAS  Google Scholar 

  • Mathur J, Mathur N, Kernebeck B, Hülskamp M (2003b) Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15:1632–1645

    Article  CAS  Google Scholar 

  • Matsudaira PT, Burgess DR (1982) Partial reconstruction of the microvillus core bundle: characterization of villin as a Ca2+-dependent, actin-bundling/depolymerizing protein. J Cell Biol 92:648–656

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB, Fechheimer M (2003) The Arabidopsis cytoskeletal genome. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Meagher RB, McKinney EC, Kandasamy MK (2000) The significance of diversity in the plant actin gene family. In: Staiger CJ et al (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 3–27

    Google Scholar 

  • >Michelot A, Guérin C, Huang S, Ingouff M, Richard S, Rodiuc N, Staiger CJ, Blanchoin L (2005) The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell 17:2296–2313

    Article  PubMed  CAS  Google Scholar 

  • Miller DD, Lancelle SA, Hepler PK (1996) Actin microfilaments do not form a dense meshwork in Lilium longiflorum pollen tube tips. Protoplasma 195:123–132

    Article  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 253:481–489

    Article  CAS  Google Scholar 

  • Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788

    Article  PubMed  CAS  Google Scholar 

  • Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S (2007) Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci U S A 104:20996–21001

    Article  PubMed  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    Article  PubMed  CAS  Google Scholar 

  • Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, Yuasa S, Usukura J, Kusumi A (2006) Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J Cell Biol 174:851–862

    Article  PubMed  CAS  Google Scholar 

  • Mullins RD, Heuser JA, Pollard TD (1998) The interaction of ARP2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci U S A 95:6181–6186

    Article  PubMed  CAS  Google Scholar 

  • Navazio L, Bewell MA, Siddiqua A, Dickinson GD, Galione A, Sanders D (2000) Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate. Proc Natl Acad Sci U S A 97:8693–8698

    Article  PubMed  CAS  Google Scholar 

  • Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci 11:309–315

    Article  PubMed  CAS  Google Scholar 

  • Ovecka M, Baluska F, Lichtscheidl I (2008) Non-invasive microscopy of tip-growing root hairs as a tool for study of dynamic and cytoskeleton-based vesicle trafficking. Cell Biol Int 32:549–553

    Article  PubMed  CAS  Google Scholar 

  • Perroud PF, Quatrano RS (2006) The role of ARPC4 in tip growth and alignment of the polar axis in filaments of Physcomitrella patens. Cell Motil Cytoskel 63:162–171

    Article  CAS  Google Scholar 

  • Perroud PF, Quatrano RS (2008) BRICK1 is required for apical cell growth in filaments of the moss Physcomitrella patens but not for gametophore morphology. Plant Cell 20:411–422

    Article  PubMed  CAS  Google Scholar 

  • Qiu JL, Jilk R, Marks MD, Szymanski DB (2002) The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. Plant Cell 14:101–118

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran S, Christensen HE, Ishimaru Y, Dong CH, Chao-Ming W, Cleary AL, Chua NH (2000) Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiol 124:1637–1647

    Article  PubMed  CAS  Google Scholar 

  • Reisen D, Hanson MR (2007) Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles. BMC Plant Biol 7:6

    Article  PubMed  CAS  Google Scholar 

  • Ringli C, Baumberger N, Keller B (2005) The Arabidopsis root hair mutants der2-der9 are affected at different stages of root hair development. Plant Cell Physiol 46:1046–1053

    Article  PubMed  CAS  Google Scholar 

  • Ryan E, Steer M, Dolan L (2001) Cell biology and genetics of root hair formation in Arabidopsis thaliana. Protoplasma 215:140–149

    Article  PubMed  CAS  Google Scholar 

  • Saedler R, Mathur N, Srinivas BP, Kernebeck B, Hülskamp M, Mathur J (2004) Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog. Plant Cell Physiol 45:813–822

    Article  PubMed  CAS  Google Scholar 

  • Samaj J, Peters M, Volkmann D, Baluska F (2000) Effects of myosin ATPase inhibitor 2,3-butanedione 2-monoxime on distributions of myosins, F-actin, microtubules, and cortical endoplasmic reticulum in maize root apices. Plant Cell Physiol 41:571–582

    PubMed  CAS  Google Scholar 

  • Sano T, Higaki T, Oda Y, Hayashi T, Hasezawa S (2005) Appearance of actin microfilament ‘twin peaks’ in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP-fimbrin. Plant J 44:595–605

    Article  PubMed  CAS  Google Scholar 

  • Schmit AC, Lambert AM (1990) Microinjected fluorescent phalloidin in vivo reveals the F-Actin dynamics and assembly in higher plant mitotic cells. Plant Cell 2:129–138

    Article  PubMed  CAS  Google Scholar 

  • Schwab B, Mathur J, Saedler R, Schwarz H, Frey B, Scheidegger C, Hülskamp M (2003) Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules. Mol Genet Genom 269:350–360

    Article  CAS  Google Scholar 

  • Shabala S, Shabala L, Gradmann D, Chen Z, Newman I, Mancuso S (2006) Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. J Exp Bot 57:171–184

    Article  PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Shao MA, Jaleel CA, Hong-Mei M (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol 331:433–441

    Article  PubMed  CAS  Google Scholar 

  • Sheahan MB, Staiger CJ, Rose RJ, McCurdy DW (2004) A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol 136:3968–3978

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annu Rev Cell Dev Biol 21:271–295

    Article  PubMed  CAS  Google Scholar 

  • >Sparkes IA, Teanby NA, Hawes C (2008) Truncated myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells: a genetic tool for the next generation. J Exp Bot 59:2499–2512

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ, Blanchoin L (2006) Actin dynamics: old friends with new stories. Curr Opin Plant Biol 9:554–562

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ, Schliwa M (1987) Actin localization and function in higher plants. Protoplasma 141:1–12

    Article  CAS  Google Scholar 

  • Staiger CJ, Baluska F, Volkmann D, Barlow PW (2000) Actin: a dynamic framework for multiple plant cell functions. Springer, Berlin

    Google Scholar 

  • Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

    Article  PubMed  CAS  Google Scholar 

  • Szymanski DB (2005) Breaking the WAVE complex: the point of Arabidopsis trichomes. Curr Opin Plant Biol 8:103–1012

    Article  PubMed  CAS  Google Scholar 

  • Szymanski DB, Marks MD, Wick SM (1999) Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis. Plant Cell 11:2331–2347

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Yokota E, Vidali L, Sonobe S, Hepler PK, Shimmen T (2000) The role of plant villin in the organization of the actin cytoskeleton, cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells of Hydrocharis. Planta 210:836–843

    Article  PubMed  CAS  Google Scholar 

  • Uhrig JF, Mutondo M, Zimmermann I, Deeks MJ, Machesky LM, Thomas P, Uhrig S, Rambke C, Hussey PJ, Hülskamp M (2007) The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development 134:967–977

    Article  PubMed  CAS  Google Scholar 

  • Van Gestel K, von Witsch M, Samaj J, Baluska F (2003) Immunological evidence for the presence of plant homologues of the actin- related protein Arp3 in tobacco and maize: subcellular localization to actin-enriched pit fields and emerging root hairs. Protoplasma 222:45–52

    Article  PubMed  CAS  Google Scholar 

  • Vitha S, Baluska F, Braun M, Å amaj J, Volkmann D, Barlow PW (2000) Comparison of cryofixation and aldehyde fixation for plant actin immunocytochemistry: aldehydes do not destroy F-actin. Histochem J 32:457–466

    Article  PubMed  CAS  Google Scholar 

  • Voigt B, Timmers AC, Samaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, BaluÅ¡ka F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621

    Article  PubMed  CAS  Google Scholar 

  • >Wang YS, Yoo CM, Blancaflor EB (2008) Improved imaging of actin filaments in transgenic Arabidopsis plants expressing a green fluorescent protein fusion to the C- and N-termini of the fimbrin actin-binding domain 2. New Phytol 177:525–536

    PubMed  CAS  Google Scholar 

  • Wasteneys GO, Willingale-Theune J, Menzel D (1997) Freeze shattering: a simple and effective method for permeabilizing higher plant cell walls. J.Microsc 188:51–61

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Scheres B (2005) Cell polarity: ROPing the ends together. Curr Opin Plant Biol 8:613–618

    Article  PubMed  CAS  Google Scholar 

  • Young ME, Cooper JA, Bridgman PC (2004) Yeast actin patches are networks of branched actin filaments. J Cell Biol 166:629–635

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Mallery EL, Schlueter J, Huang S, Fan Y, Brankle S, Staiger CJ, Szymanski DB (2008) Arabidopsis SCARs function interchangeably to meet actin-related protein 2/3 activation thresholds during morphogenesis. Plant Cell 20:995–1011

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Dyachok J, Krishnakumar S, Smith LG, Oppenheimer DG (2005) IRREGULAR TRICHOME BRANCH1 in Arabidopsis encodes a plant homolog of the actin-related protein2/3 complex activator Scar/WAVE that regulates actin and microtubule organization. Plant Cell 17:2314–2326

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Yang Z (2000) The Rop GTPase switch turns on polar growth in pollen. Trends Plant Sci 5:298–303

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding by the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI), The Ministry of Research and Innovation (MRI), Ontario, and the Keefer Trust Fund, Guelph.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sinclair, A., Schenkel, M., Mathur, J. (2009). Signaling to the Actin Cytoskeleton During Cell Morphogenesis and Patterning. In: Mancuso, S., Balu¿ka, F. (eds) Signaling in Plants. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89228-1_7

Download citation

Publish with us

Policies and ethics