Skip to main content
Log in

Changes in ultrastructure and cytochemistry of the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales) treated with cadmium

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The agarophyte macroalgae Gracilaria domingensis (Kützing) Sonder ex Dickie is widely distributed along the Brazilian coast. While this species produces agarana, it is more important in the human diet. Therefore, the present study aimed to evaluate the biological effects of cadmium on its morphology and cellular organization. To accomplish this, the effects of cadmium in apical segments of G. domingensis were examined in vitro. Over a period of 16 days, the segments were cultivated and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m−2 s−1, with cadmium treatments in doses of 100, 200 and 300 μM. The samples were processed for light, transmission and scanning electron microscopy. Histochemical analyses included Toluidine Blue for acidic polysaccharides, Coomassie Brilliant Blue for total protein, and Periodic Acidic Schiff for neutral polysaccharides. In all cadmium treatments, cytochemical analysis showed 1) metachromatic granulation in vacuole and lenticular thickness of the cell wall, 2) a higher concentration of cytoplasmic organelles, and 3) an increase in the number of floridean starch grains. Cadmium also caused changes in the ultrastructure of cortical and subcortical cells, including increased cell wall thickness and vacuole volume, as well as the destruction of chloroplast internal organization and increased number of plastoglobuli. In addition, treated plants showed a gradual increase in surface roughness, apparently the result of cadmium absorption. Taken together, these findings strongly suggested that cadmium negatively affects the agarophyte G. domingensis, posing a threat to the vitality of this plant species as a supplement in the human diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrade LR, Farina M, Amado Filho GM (2002) Role of Padina gymnospora (Dictyotales, Phaeophyceae) cell walls in cadmium accumulation. Phycologia 41:39–48

    Article  Google Scholar 

  • Andrade LR, Farina M, Amado Filho GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117–125

    Article  PubMed  CAS  Google Scholar 

  • Armisen R (1995) Word-wide use and importance of Gracilaria. J Appl Phycol 7:231–243

    Article  Google Scholar 

  • Bouzon ZL (2006) Histoquímica e ultra-estrutura da ontogênese dos tetrasporângios de Hypnea musciformis (Wulfen) J. V. Lamour. (Rhodophyta, Gigartinales). Rev Bras Bot 29(2):229–238

    Article  Google Scholar 

  • Bouzon ZL, Ferreira EC, Santos R, Scherner F, Horta Paulo A, Maraschin M, Schmidt EC (2012) Influences of cadmium on fine structure and metabolism of Hypnea musciformis (Rhodophyta, Gigartinales) cultivated in vitro. Protoplasma. doi:10.1007/s00709-011-0301-6

  • Diannelidis BE, Delivopoulos SG (1997) The effects of zinc, copper and cadmium on the fine structure of Ceramium ciliatum (Rhodophyceae, Ceramiales). Mar Environ Res 44(2):127–134

    Article  CAS  Google Scholar 

  • Dodge JD (1973) The fine structure of algal cells. Academic, London, New York, 261 pp

    Google Scholar 

  • Edwards P (1970) Illustrated guide to the seaweeds and sea grasses in the vicinity of Porto Aransas, Texas. Contrib Austin Mar Sci 15:1–228

    Google Scholar 

  • Gahan PB (1984) Plant Histochemistry and cytochemistry: an introduction. Academic, London, 301 pp

    Google Scholar 

  • Gordon EM, McCandless EL (1973) Ultrastructure and histochemistry of Chondrus crispus Stackhouse. In: Harvey MJ, McLachlan J (Eds), Chondrus Crispus: T. N. Scot. Inst. Sci., Halifax, pp 111–133

  • Gordon-Mills EM, Tas J, Mc Candless EL (1978) Carrageenans in the cell walls of Chondrus crispus Stack. (Rhodophyceae, Gigartinales). III. Metachromasia and the topological reaction. Phycologia 17:95–104

    Article  Google Scholar 

  • Hashim MA, Chu KH (2004) Biosorption of cadmium by brown, green and red seaweeds. Chem Eng J 97:249–255

    Article  CAS  Google Scholar 

  • Holzinger A, Roleda MY, Lütz C (2009) The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron 40:831–838

    Article  PubMed  Google Scholar 

  • Hu S, Tang CH, Wu M (1996) Cadmium accumulation by several seaweeds. Sci Tot Environ 187:65–71

    Article  CAS  Google Scholar 

  • Kain JM, Destombe C (1995) A rewiew of the life history, reproduction and phenology of Gracilaria. J App Phycol 7:269–281

    Article  Google Scholar 

  • Mamboya FA, Pratap HB, Mtolera M, Bjork M (1999) The effect of copper on the daily growth rate and photosynthetic efficiency of the brown macroalga Padina boergensenii. In: Richmond MD, Francis J (eds) Proceedings of the Conference on Advances on Marine Sciences in Tanzania pp 185–192

  • Mc Cully ME (1968) Histological studies on the genus Fucus. Protoplasma 62:20–40

    Google Scholar 

  • Oliveira EC, Plastino EM (1994) Gracilariaceae. In: Akatsuka I (ed) Biology of economic seaweeds. SPB Acad. Publis., The Hague, pp 185–226

    Google Scholar 

  • Oliveira EC, Paula EJ, Plastino EM, Petti R (1995) Metodologías para el cultivo no axenico de macroalgas marinas in vitro. In: Alveal K, Ferrario M, Oliveira E, Sar E (eds) Manual de métodos ficológicos. Universidad de Concepción, Concepción-Chile, pp 429–447

    Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at light pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  • Rocchetta I, Leonardi PI, Amado Filho GM, de Molina MDR, Conforti V (2007) Ultrastructure and X-ray microanalysis of Euglena gracilis (Euglenophyta) under chromium stress. Phycologia 46:300–306

    Article  Google Scholar 

  • Schmidt EC, Scariot LA, Rover T, Bouzon ZL (2009) Changes in ultrastructure and histochemistry of two red macroalgae strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales), as a consequence of ultraviolet B radiation exposure. Micron 40:860–869

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EC, Santos R, Horta PA, Maraschin M, Bouzon ZL (2010a) Effects of UVB radiation on the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales): Changes in cell organization, growth and photosynthetic performance. Micron 41:919–930

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EC, Maraschin M, Bouzon ZL (2010b) Effects of UVB radiation on the carragenophyte Kappaphycus alvarezii (Rhodophyta, Gigartinales): changes in ultrastructure, growth, and photosynthetic pigments. Hydrobiologia 649:171–182

    Article  CAS  Google Scholar 

  • Schmidt EC, Nunes BG, Maraschin M, Bouzon ZL (2010c) Effect of ultraviolet-B radiation on growth, photosynthetic pigments, and cell biology of Kappaphycus alvarezii (Rhodophyta, Gigartinales) macroalgae brown strain. Photosynthetica 48:161–172

    Article  CAS  Google Scholar 

  • Schmidt EC, Pereira B, Mansur C, Santos R, Scherner F, Horta PA, Martins RP, Latini A, Maraschin M, Bouzon ZL (2012) Alterations in architecture and metabolism induced by ultraviolet radiation-B in the carragenophyte Chondracanthus teedei (Rhodophyta, Gigartinales). Protoplasma 249:353–367

    Google Scholar 

  • Sheng PX, Ting Y, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mecanisms. J Coll Int Sci 275:131–141

    Article  CAS  Google Scholar 

  • Talarico L (2002) Fine structure and X-ray microanalysis of a red macrophyte cultured under cadmium stress. Environ Pollut 120:813–821

    PubMed  CAS  Google Scholar 

  • Talarico L, Bozo S, Maranzana G (1997) Preliminary observations on Audouinella saviana (Meneghini) Woelkerling (Nemaliales, Rhodophyta) cultured at increasing Cd concentrations. Phycologia 36:111

    Google Scholar 

  • Tsekos I, Schnepf E, Makrantonakis A (1985) The ultrastructure of tetrasporogenesis in the marine red alga Chondria tenuissima (Good. Et Woodw.) (Ceramiales, Rhomelaceae). Ann Bot 55:607–619

    Google Scholar 

  • Visvik I, Rachlin JW (1992) Ultraestructural changes in Dunaliella minuta following acute and chronic exposure to copper and cadmium. Arch Environ Contam Toxicol 23:420–425

    Google Scholar 

  • Xia JR, Li YJ, Lu J, Chen B (2004) Effects of copper and cadmium on growth, photosyntesis, and pigment content in Gracilaria lemaneiformis. Bull Envirom Contam Toxicol 73:979–986

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the staff of the Central Laboratory of Electron Microscopy (LCME), Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil, for the use of their scanning and transmission electron microscope. This study was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Fundação de Apoio à Pesquisa Cientifica e Tecnológica do Estado de Santa Catarina (FAPESC).

Conflict of interest

The authors declare that they have no conflict of interest.

Contributors

Both authors contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenilda L. Bouzon.

Additional information

Handling Editor: Tsuneyoshi Kuroiwa

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, R.W., Schmidt, É.C. & Bouzon, Z.L. Changes in ultrastructure and cytochemistry of the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales) treated with cadmium. Protoplasma 250, 297–305 (2013). https://doi.org/10.1007/s00709-012-0412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0412-8

Keywords

Navigation