Skip to main content
Log in

The relevance of compartmentation for cysteine synthesis in phototrophic organisms

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In the vascular plant Arabidopsis thaliana, synthesis of cysteine and its precursors O-acetylserine and sulfide is distributed between the cytosol, chloroplasts, and mitochondria. This compartmentation contributes to regulation of cysteine synthesis. In contrast to Arabidopsis, cysteine synthesis is exclusively restricted to chloroplasts in the unicellular green alga Chlamydomonas reinhardtii. Thus, the question arises, whether specification of compartmentation was driven by multicellularity and specified organs and tissues. The moss Physcomitrella patens colonizes land but is still characterized by a simple morphology compared to vascular plants. It was therefore used as model organism to study evolution of compartmented cysteine synthesis. The presence of O-acetylserine(thiol)lyase (OAS-TL) proteins, which catalyze the final step of cysteine synthesis, in different compartments was applied as criterion. Purification and characterization of native OAS-TL proteins demonstrated the presence of five OAS-TL protein species encoded by two genes in Physcomitrella. At least one of the gene products is dual targeted to plastids and cytosol, as shown by combination of GFP fusion localization studies, purification of chloroplasts, and identification of N termini from native proteins. The bulk of OAS-TL protein is targeted to plastids, whereas there is no evidence for a mitochondrial OAS-TL isoform and only a minor part of OAS-TL protein is localized in the cytosol. This demonstrates that subcellular diversification of cysteine synthesis is already initialized in Physcomitrella but appears to gain relevance later during evolution of vascular plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ac:

Acetyl

ARP:

APS reductase

APS:

Adenosine 5′phosphosulfate

ASRP:

Assimilatory sulfate reduction pathway

ATP:

Adenosine triphosphate

ATPS:

ATP sulfurylase

CLSM:

Confocal laser scanning microscopy

CSC:

Cysteine synthase complex

GFP:

Green fluorescence protein

LC-MS/MS:

Liquid chromatography-mass spectrometry/mass spectrometry

mRNA:

Messenger ribonucleic acid

OAS:

O-acetylserine

OAS-TL:

O-acetylserine(thiol)lyase

PAGE:

Polyacrylamide gel electrophoresis

SAP:

SAT-affinity purification

SAT:

Serine acetyltransferase

SDS:

Sodium dodecyl sulfate

SiR:

Sulfite reductase

SULTR:

Sulfate transporter

References

  • Brunold C, Suter M (1982) Intracellular localization of serine acetyltransferase in spinach leaves. Planta 155:321–327

    Article  CAS  Google Scholar 

  • Cove D, Bezanilla M, Harries P, Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520

    Article  PubMed  CAS  Google Scholar 

  • Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants-structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255:235–245

    Article  PubMed  CAS  Google Scholar 

  • Francois JA, Kumaran S, Jez JM (2006) Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex. Plant Cell 18:3647–3655

    Article  PubMed  CAS  Google Scholar 

  • Giordano M, Norici A, Ratti S (2008) Role of sulfur for algae: aquisition, metabolism, ecology and evolution. In: Hell R, Dahl C, Leustek T (eds) Sulfur metabolism in phototrophic organisms, vol 27, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 397–415

    Chapter  Google Scholar 

  • Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148:1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R (2008) Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell 20:168–185

    Article  PubMed  CAS  Google Scholar 

  • Hell R, Wirtz M (2011) Molecular biology, biochemistry and cellular physiology of cysteine metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0154. doi:10.1199/tab.0154

    PubMed  Google Scholar 

  • Hesse H, Trachsel N, Suter M, Kopriva S, von Ballmoos P, Rennenberg H, Brunold C (2003) Effect of glucose on assimilatory sulphate reduction in Arabidopsis thaliana roots. J Exp Bot 54:1701–1709

    Article  PubMed  CAS  Google Scholar 

  • Hohe A, Egener T, Lucht JM, Holtorf H, Reinhard C, Schween G, Reski R (2004) An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. Curr Genet 44:339–347

    Article  PubMed  CAS  Google Scholar 

  • Joshi CP, Zhou H, Huang X, Chiang VL (1997) Context sequences of translation initiation codons in plants. Plant Mol Biol 35:993–1001

    Article  PubMed  CAS  Google Scholar 

  • Kawashima CG, Berkowitz O, Hell R, Noji M, Saito K (2005) Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiol 137:220–230

    Article  PubMed  CAS  Google Scholar 

  • Khan MS, Haas FH, Allboje Samami A, Moghaddas Gholami A, Bauer A, Fellenberg K, Reichelt M, Hansch R, Mendel RR, Meyer AJ, Wirtz M, Hell R (2010) Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22:1216–1231

    Article  PubMed  CAS  Google Scholar 

  • Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schafer E, Nagy F (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11:1445–1456

    PubMed  CAS  Google Scholar 

  • Kopriva S, Fritzemeier K, Wiedemann G, Reski R (2007) The putative moss 3′-phosphoadenosine-5′-phosphosulfate reductase is a novel form of adenosine-5′-phosphosulfate reductase without an iron-sulfur cluster. J Biol Chem 282:22930–22938

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Patron N, Keeling P, Leustek T (2008) Phylogenetic analysis of sulfate assimilation and cysteine biosynthesis in phototrophic organisms. In: Hell R, Dahl C, Leustek T (eds) Sulfur metabolism in phototrophic organisms, vol 27, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 33–60

    Chapter  Google Scholar 

  • Koprivova A, Suter M, den Camp RO, Brunold C, Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122:737–746

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, North KA, Kopriva S (2008) Complex signaling network in regulation of adenosine 5′-phosphosulfate reductase by salt stress in Arabidopsis roots. Plant Physiol 146:1408–1420

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  PubMed  CAS  Google Scholar 

  • Krüger S, Niehl A, Martin MCL, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Hoefgen R, Gotor C, Hesse H (2009) Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopis. Plant Cell Environ 32:349–367

    Article  Google Scholar 

  • Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 13:542–549

    Article  PubMed  CAS  Google Scholar 

  • Lang EG, Mueller SJ, Hoernstein SN, Porankiewicz-Asplund J, Vervliet-Scheebaum M, Reski R (2011) Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as the basis for sub-cellular proteomics. Plant Cell Rep 30:205–215

    Article  PubMed  CAS  Google Scholar 

  • Linka N, Weber AP (2010) Intracellular metabolite transporters in plants. Mol Plant 3:21–53

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE, Droux M, Martin J, Douce R (1990) Localization of ATP-sulfurylase and O-acetylserine(thiol)lyase in spinach leaves. Plant Physiol 94:1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Meyer AJ, Rausch T (2008) Biosynthesis, compartmentation and cellular functions of glutathione in plant cells. In: Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms, vol 27, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 161–184

    Chapter  Google Scholar 

  • Patron NJ, Durnford DG, Kopriva S (2008) Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol Biol 8:39

    Article  PubMed  Google Scholar 

  • Polevoda B, Sherman F (2003) Composition and function of the eukaryotic N-terminal acetyltransferase subunits. Biochem Biophys Res Commun 308:1–11

    Article  PubMed  CAS  Google Scholar 

  • Prigge MJ, Bezanilla M (2010) Evolutionary crossroads in developmental biology: Physcomitrella patens. Development 137:3535–3543

    Article  PubMed  CAS  Google Scholar 

  • Rabilloud T (1999) Silver staining of 2-D electrophoresis gels. Methods Mol Biol 112:297–305

    PubMed  CAS  Google Scholar 

  • Reski R (1998) Development, genetics and molecular biology of mosses. Bot Acta 111:1–15

    CAS  Google Scholar 

  • Rolland N, Droux M, Douce R (1992) Subcellular distribution of O-acetylserine(thiol)lyase in cauliflower (Brassica oleracea L.) inflorescence. Plant Physiol 98:927–935

    Article  PubMed  CAS  Google Scholar 

  • Rother M, Krauss GJ, Grass G, Wesenberg D (2006) Sulphate assimilation under Cd stress in Physcomitrella patens-combined transcript, enzyme and metabolite profiling. Plant Cell Environ 29:1801–1811

    Article  PubMed  CAS  Google Scholar 

  • Ruffet ML, Droux M, Douce R (1994) Purification and kinetic properties of serine acetyltransferase free of O-acetylserine(thiol)lyase from spinach chloroplasts. Plant Physiol 104:597–604

    PubMed  CAS  Google Scholar 

  • Ruffet ML, Lebrun M, Droux M, Douce R (1995) Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform. Eur J Biochem 227:500–509

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Shibagaki N, Grossman A (2008) The state of sulfur metabolism in algae: from ecology to genomics. In: Hell R, Dahl C, Leustek T (eds) Sulfur metabolism in phototrophic organisms, vol 27, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 235–272

    Chapter  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krahenbuhl U, den Camp RO, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant J 31:729–740

    Article  PubMed  CAS  Google Scholar 

  • Warrilow AG, Hawkesford MJ (2000) Cysteine synthase (O-acetylserine (thiol) lyase) substrate specificities classify the mitochondrial isoform as a cyanoalanine synthase. J Exp Bot 51:985–993

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M, Saito K (2008) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell 20:2484–2496

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann G, Koprivova A, Schneider M, Herschbach C, Reski R, Kopriva S (2007) The role of the novel adenosine 5′-phosphosulfate reductase in regulation of sulfate assimilation of Physcomitrella patens. Plant Mol Biol 65:667–676

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann G, Hermsen C, Melzer M, Buttner-Mainik A, Rennenberg H, Reski R, Kopriva S (2010) Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development. FEBS Lett 584:2271–2278

    Article  PubMed  CAS  Google Scholar 

  • Wirtz M, Hell R (2006) Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J Plant Physiol 163:273–286

    Article  PubMed  CAS  Google Scholar 

  • Wirtz M, Birke H, Heeg C, Mueller C, Hosp F, Throm C, Koenig S, Feldman-Salit A, Rippe K, Petersen G, Wade RC, Rybin V, Scheffzek K, Hell R (2010a) Structure and function of the hetero-oligomeric cysteine synthase complex in plants. J Biol Chem 285:32810–32817

    Article  PubMed  CAS  Google Scholar 

  • Wirtz M, Heeg C, Samami AA, Ruppert T, Hell R (2010b) Enzymes of cysteine synthesis show extensive and conserved modifications patterns that include Nα-terminal acetylation. Amino Acids 39:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

H.B. is affiliated with the graduate program Evolutionary Networks at Different Scales (ENDS) and funded by the Landesgraduiertenförderung Baden-Württemberg and Schmeil Stiftung Heidelberg. S.J.M. is funded by the Spemann Graduate School for Biology and Medicine (SGBM), established within the Excellence Initiative of the German federal and state governments (GSC-4). The authors gratefully acknowledge financial support by the German Research Council (DFG) via research group FOR383 “Sulfur metabolism in plants: junction of basic metabolic pathways and molecular mechanisms of stress resistance” and grant He1848/13-1.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Hell.

Additional information

Handling Editor: Kang Chong

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Alignment of Arabidopsis and Physcomitrella OAS-TL-like proteins. Amino acid sequences of A. thaliana OAS-TLs and P. patens OAS-TL-like proteins were obtained from the Arabidopsis Information Resource (www.arabidopsis.org) and the P. patens resource (www.cosmoss.org), respectively. Alignment was done using the AlignX software (component of Vector NTI Suite 9.0.0). Amino acid residues known to be important for enzymatic activity are marked with boxes, the β8A/β9A loop is marked with a dotted box. (PDF 584 kb)

Supplemental Fig. 2

Genomic DNA sequence of the 5′ end of PpOAS-TL 1 (Pp1s17_59V2.1, a) and PpOAS-TL 2 (Pp1s71_187V2.1, b). Sequences are shown from position −7 of the first potential in frame start codon ATG. All potential start codons are marked in bold and underlined and the respective methionine amino acid residue (Met) is indicated. Nucleotides at position −3 and +4 are considered to be most critical for the strength of translation initiation sites and are highlighted in grey if they are consistent with either the Kozak consensus sequence ((GCC)GCC(A/G)CCATGG) or the context sequence of translation initiation codons in lower plants according to Joshi et al. (C(A/C)A(A/C)AATGGC(C/G)) (Kozak 1987; Joshi et al. 1997). (PDF 74 kb)

Supplemental Fig. 3

LC-MS/MS spectra of Nα-terminally acetylated peptides. Fragment tables are given in Supplemental Table 1. (PDF 137 kb)

Supplemental Fig. 4

Alignment of Arabidopsis and Physcomitrella SAT-like proteins. Amino acid sequences of A. thaliana OAS-TLs and P. patens OAS-TL-like proteins were obtained from the Arabidopsis Information Resource (www.arabidopsis.org) and the P. patens resource (www.cosmoss.org), respectively. Alignment was done using the AlignX software (component of Vector NTI Suite 9.0.0). Amino acid residues known to be important for enzymatic activity are marked with boxes, the flexible C-terminal tail involved in SAT/OAS-TL interaction is marked with a dotted box. (PDF 625 kb)

Supplemental Table 1

a Fragment table for 34-ASLESAMAGLQLK (Phypa116788). b Fragment table for 67-AVSTEKELELNIADDVTQLIGK (Phypa116788). c Fragment table for 68-AVSVEKELEMNIADDVTQLIGK (Phypa164579). (PDF 172 kb)

Supplemental Table 2

Target signal prediction for Met1-PpOAS-TL 1 and Met1-PpOAS-TL 2 using different prediction programs listed in the ARAMEMNON plant membrane protein database (http://aramemnon.uni-koeln.de/index.ep). Target signal length (number of amino acid residues), as predicted by TargetP_v1.1, is given in brackets. (PDF 14 kb)

Supplemental Table 3

Primers for amplification of PpOAS-TL 1 and PpOAS-TL 2 for cloning into the vector backbone mAV4. (PDF 62 kb)

Supplemental Table 4

Target signal prediction for putative PpSATs using different prediction programs listed in the ARAMEMNON plant membrane protein database (http://aramemnon.uni-koeln.de/index.ep). (PDF 17 kb)

Supplemental Text 1

Mass spectrometry (PDF 8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birke, H., Müller, S.J., Rother, M. et al. The relevance of compartmentation for cysteine synthesis in phototrophic organisms. Protoplasma 249 (Suppl 2), 147–155 (2012). https://doi.org/10.1007/s00709-012-0411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0411-9

Keywords

Navigation