Skip to main content
Log in

Morphophysiological analyses of Neochloris oleoabundans (Chlorophyta) grown mixotrophically in a carbon-rich waste product

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Neochloris oleoabundans is considered one of the most promising oil-rich microalgae because of its ability to store lipids under nitrogen starvation. However, high biomass densities, required for applications on medium to large scale, are not reached in this condition of growth. As previous studies on other microalgae have shown that mixotrophy allows to obtain higher biomass in comparison to autotrophic cultures, we performed morphophysiological analyses in order to test the mixotrophic growth capability of N. oleoabundans. A carbon-rich manure derived from the apple vinegar production (AWP) was added to the medium. Cells were also cultivated under nutrient starvation (tap water), to observe the expected lipids accumulation, and combining AWP to water, to test the potential of this waste in a low-cost culture system. The results highlighted that AWP in the medium allowed to obtain the highest final cell density. Moreover, starch granules were stored inside chloroplast at the beginning of the experiment. The presence of AWP did not induce variations on light harvesting complex II (LHCII)–photosystem II (PSII) assembly, even if an interesting promotion of pigment synthesis in cells was observed. On the other hand, in starved cells, chloroplast degeneration, pigment content decrease, altered LHCII–PSII assembly and accumulation of high amount of lipid globules were observed, irrespective of the presence of AWP. The results suggest that mixotrophy promotes growth in N. oleoabundans and open up the possibility of using waste products from agri-food industries for this purpose. After growth, cells could be transferred under nutrient starvation to induce lipid accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akazawa K, Okamoto K (1980) Biosynthesis of sucrose. In: Preiss J (ed) The biochemistry of plants, vol 3. Academic, New York, pp 199–218

    Google Scholar 

  • Andrade MR, Costa JAV (2007) Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 264:130–134

    Article  Google Scholar 

  • Baldisserotto C, Ferroni L, Andreoli C, Fasulo MP, Bonora A, Pancaldi S (2005) Dark-acclimation of the chloroplast in Koliella antarctica exposed to a simulated austral night condition. Arctic Antarct Alpine Res 37:146–156

    Article  Google Scholar 

  • Borowitzka MA (1998) Vitamins and fine chemicals from microalgae. In: Borowitzka MA, Borowitzka LJ (ed) Micro-algal biotechnology. Oxford University Press, Oxford, pp 153–196

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotech Adv 25:294–306

    Article  CAS  Google Scholar 

  • de la Jara A, Mendoza H, Martel A, Molina C, Nordströn L, de la Rosa V, Diaz R (2003) Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J App Phycol 15:433–438

    Article  Google Scholar 

  • Ferroni L, Baldisserotto C, Pagnoni A, Fasulo MP, Pancaldi S (2004) Adaptive modifications of the photosynthetic apparatus in Euglena gracilis Klebs exposed to manganese excess. Protoplasma 224:167–177

    Article  PubMed  CAS  Google Scholar 

  • Ferroni L, Baldisserotto C, Pantaleoni L, Billi P, Fasulo MP, Pancaldi S (2007a) High salinity alters chloroplast morpho-physiology in a freshwater Kichneriella species (Selenastraceae) from Ethipian Lake Awasa. Am J Bot 94:1973–1983

    Article  Google Scholar 

  • Ferroni L, Baldisserotto C, Zennaro V, Soldani C, Fasulo MP, Pancaldi S (2007b) Acclimation to darkness in the marine chlorophyte Koliella antarctica culture under low salinity: hypotheses on its origin in the polar environment. Eur J Phycol 42:91–104

    Article  CAS  Google Scholar 

  • Ferroni L, Baldisserotto C, Pantaleoni L, Fasulo MP, Fagioli P, Pancaldi S (2009) Degreening of the unicellular alga Euglena gracilis: thylakoid composition, room temperature fluorescence spectra and chloroplast morphology. Plant Biology 11:631–641

    Article  PubMed  CAS  Google Scholar 

  • Ferroni L, Baldisserotto C, Giovanardi M, Pantaleoni L, Morosinotto T, Pancaldi S (2011) Revised assignment of room-temperature chlorophyll fluorescence emission bands in single living cells of Chlamydomonas reinhardtii. J Bioenerg Biomembr 43:163–173

    Article  PubMed  CAS  Google Scholar 

  • Geider RJ, MacIntyre HI, Graziano LM, McKay RML (1998) Responses of the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. Eur J Phycol 15:1–11

    Google Scholar 

  • Gouveia L, Oliveira AC (2008) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  PubMed  Google Scholar 

  • Gouveia L, Marques AE, Lopes da Silva T, Reis A (2009) Neochloris oleoabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826

    Article  PubMed  CAS  Google Scholar 

  • Gushina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  Google Scholar 

  • Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotech 162:1978–1995

    Article  CAS  Google Scholar 

  • Hu H, Gao K (2003) Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol Lett 25:421–425

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as a feedstocks for biofuel production: perspective and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Ip P, Wong K, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1776

    Article  CAS  Google Scholar 

  • Issa AA, Abdel-Basset RM, Adam MS (1995) Abolition of heavy metal toxicity on Kirchneriella lunaris (Chlorophyta) by calcium. Ann Bot 75:189–192

    Article  CAS  Google Scholar 

  • Kang R, Wang J, Shi D, Cong W, Cai Z, Ouyang F (2004) Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp. Biotechnol Lett 26:1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, Nagai S (1992) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J Ferment Bioeng 74:17–20

    Article  CAS  Google Scholar 

  • Latasa M, Berdalet E (1994) Effect of nitrogen and phosphorous starvation on pigment composition of cultured Heterocapsa sp. J Plankton Res 16:83–94

    Article  Google Scholar 

  • Lee Y (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Leonardi PI, Popovich CA, Damiani MC (2011) Feedstocks for second-generation biodiesel: microalgae's biology and oil composition. In: dos Santos Bernardes MA (ed) Economic effects of biofuel production. Tech, Croatia, pp 318–346

    Google Scholar 

  • Levine RB, Costanza-Robinson MS, Spatafora GA (2011) Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenerg 35:40–49

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008a) Biofuels from microalgae. Biotechnol Prog 24:815–820

    PubMed  CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008b) Effect on nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Marquez FJ, Nishio N, Nagai S, Sasaki K (1995) Enhancement of biomass and pigment production during growth of Spirulina platensis mixotrophic culture. J Chem Tech Biotechnol 62:159–164

    Article  CAS  Google Scholar 

  • Martinez F, Orus MI (1991) Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101. Plant Physiol 95:1150–1155

    Article  PubMed  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Nagle N, Lemke P (1990) Production of methyl ester fuel from microalgae. Appl Biochem Biotech 24(25):355–361

    Article  Google Scholar 

  • Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 23:1121–1132

    Article  CAS  Google Scholar 

  • Osterlind S (1950) Inorganic carbon sources of green algae: II. Carbonic anhydrase in Scenedesmus quadricauda and Chlorella pyrenoidosa. Physiol Plantarum 3:430–434

    Article  Google Scholar 

  • Osterlind S (1951) Inorganic carbon sources of green algae. IV. Photoactivation of some factor necessary for bicarbonate assimilation. Physiol Plantarum 4:514–527

    Article  CAS  Google Scholar 

  • Pancaldi S, Bonora A, Baldisserotto C, Gualandri R, Neri LM, Fasulo MP (2001) De-regulation of light-induced plastidogenesis in etiolated Euglena gracilis Klebs treated with DNA hypermethylating 3’-azido-3’-deoxythymidine. Plant Biology 3:524–535

    Article  CAS  Google Scholar 

  • Pancaldi S, Baldisserotto C, Ferroni L, Bonora A, Fasulo MP (2002) Room temperature microspectrofluorimetry as a useful tool for studying the assembly of the PSII chlorophyll–protein complexes in single living cells of etiolated Euglena gracilis Klebs during the greening process. J Exp Bot 53:1753–1763

    Article  PubMed  CAS  Google Scholar 

  • Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresource Technol 100:5988–5995

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1968) The mechanism of photosynthetic use of HCO3 by Hydrodictyon africanum. J Exp Bot 19:193–206

    Article  CAS  Google Scholar 

  • Sawayama S, Inoue S, Dote Y, Yokoyama SY (1995) CO2 fixation and oil production through microalga. Energ Conver Manage 36:729–731

    Article  CAS  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2011) Biodiesel from algae: challenges and prospects. Curr Opin Biotech 21:277–286

    Article  Google Scholar 

  • Shenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Shi XM, Chen F (1999) Production and rapid extraction of lutein and the other lipid-soluble pigments from Chlorella protothecoides grown under heterotrophic and mixotrophic conditions. Nahrung 43:109–113

    Article  CAS  Google Scholar 

  • Šiffel P, Braunová Z (1999) Release and aggregation of the light harvesting complex in intact leaves subjected to strong CO2 deficit. Photosynth Res 61:217–226

    Google Scholar 

  • Smith FA (1968) Rates of photosynthesis in characean cells. II. Photosynthetic 14CO2 fixation and 14C-bicarbonate uptake by characean cells. J Exp Bot 19:207–217

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  PubMed  CAS  Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15:554–564

    Article  PubMed  CAS  Google Scholar 

  • Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrose starved green alga Neochloris oleoabundans. Enzyme Microb Tech 5:435–440

    Article  CAS  Google Scholar 

  • Wang B, Lan CQ (2011) Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresource Technol 102:5639–5644

    Article  CAS  Google Scholar 

  • Welburn AR (1994) The spectral determination of Chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometer of different resolution. Plant Physiol 144:307–313

    Article  Google Scholar 

  • Wijffels RH, Barbosa MJ (2011) An outlook on microalgal biofuels. Science 329:796–799

    Article  Google Scholar 

  • Xu H, Miao X, Wu K (2006) High quality biodiesel production from a microalga Chlorella prototecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Xu J, Vail D, Weathers P (2011) Ettlia oleoabundans growth and oil production on agricultural anaerobic waste effluents. Bioresource Technol 102:5076–5082

    Article  CAS  Google Scholar 

  • Young EB, Beardall J (2003) Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle. J Phycol 39:897–905

    Article  CAS  Google Scholar 

  • Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21:127–133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the Consorzio Universitario Italiano per l’Argentina (CUIA) and from the University of Ferrara.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonetta Pancaldi.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovanardi, M., Ferroni, L., Baldisserotto, C. et al. Morphophysiological analyses of Neochloris oleoabundans (Chlorophyta) grown mixotrophically in a carbon-rich waste product. Protoplasma 250, 161–174 (2013). https://doi.org/10.1007/s00709-012-0390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0390-x

Keywords

Navigation