Skip to main content
Log in

Nanoscale and geometric influences on the microtubule cytoskeleton in plants: thinking inside and outside the box

  • New ideas in cell biology
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The dynamic microtubule (MT) cytoskeleton found in the cell cortex of plants drives cell expansion via cell wall modifications. In the last decade, live cell imaging studies employing green fluorescent protein have helped unravel the mechanisms behind how cells arrange cortical MTs into complex arrays and shape cell expansion. In this review, we explore the reverse scenario: how cell geometry and organelles influence and constrain the organization and behavior of cortical MTs. This newly emerging principle explains how cells perceive local nanoscale structural input from MT-organizing centers, such as the nucleus, endomembranes, and cell edges, and translate this into global cell-wide order via MT self-organization. Studies primarily using the model plant Arabidopsis thaliana and tobacco BY-2 suspension cultures have broadened our understanding of how cells form not only elegant parallel arrays but also more complex MT configurations, including the prominent MT bundles found in preprophase bands, leaf epidermal cells, and developing xylem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allard JF, Ambrose JC, Wasteneys GO, Cytrynbaum EN (2010a) A mechanochemical model explains interactions between cortical microtubules in plants. Biophys J 99:1082–1090

    Article  PubMed  CAS  Google Scholar 

  • Allard JF, Wasteneys GO, Cytrynbaum EN (2010b) Mechanisms of self-organization of cortical microtubules in plants revealed by computational simulations. Mol Biol Cell 21:278–286

    Article  PubMed  CAS  Google Scholar 

  • Ambrose JC, Wasteneys GO (2008) CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell 19:4730–4737

    Article  PubMed  CAS  Google Scholar 

  • Ambrose C, Wasteneys G (2011) Cell edges accumulate gamma tubulin complex components and nucleate microtubules following cytokinesis in Arabidopsis thaliana cells. PLoS ONE (in press)

  • Ambrose C, Allard JF, Cytrynbaum EN, Wasteneys GO (2011) A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat Commun 2:430

    Article  PubMed  Google Scholar 

  • Bannigan A, Wiedemeier AM, Williamson RE, Overall RL, Baskin TI (2006) Cortical microtubule arrays lose uniform alignment between cells and are oryzalin resistant in the Arabidopsis mutant, radially swollen 6. Plant Cell Physiol 47:949–958

    Article  PubMed  CAS  Google Scholar 

  • Baulin VA, Marques CM, Thalmann F (2007) Collision induced spatial organization of microtubules. Biophys Chem 128:231–244

    Article  PubMed  CAS  Google Scholar 

  • Bichet A, Desnos T, Turner S, Grandjean O, Hofte H (2001) BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J 25:137–148

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE (2007) The pleiomorphic plant MTOC: an evolutionary perspective. J Integr Plant Biol 49:1142–1153

    Article  Google Scholar 

  • Busby CH, Gunning BES (1984) Microtubules and morphogenesis in stomata of the water fern Azolla—an unusual mode of guard-cell and pore development. Protoplasma 122:108–119

    Article  Google Scholar 

  • Chan J, Calder GM, Doonan JH, Lloyd CW (2003) EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat Cell Biol 5:967–971

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Calder G, Fox S, Lloyd C (2007) Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells. Nat Cell Biol 9:171–175

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Eder M, Crowell EF, Hampson J, Calder G, Lloyd C (2011) Microtubules and CESA tracks at the inner epidermal wall align independently of those on the outer wall of light-grown Arabidopsis hypocotyls. J Cell Sci 124:1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Cleary AL, Hardham AR (1988) Depolymerization of microtubule arrays in root-tip cells by oryzalin and their recovery with modified nucleation patterns. Can J Bot 66:2353–2366

    Article  CAS  Google Scholar 

  • Collings DA, Wasteneys GO (2005) Actin microfilament and microtubule distribution patterns in the expanding root of Arabidopsis thaliana. Can J Bot 83:579–590

    Article  Google Scholar 

  • Crowell EF, Timpano H, Desprez T, Franssen-Verheijen T, Emons AM, Hofte H, Vernhettes S (2011) Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl. Plant Cell 23:2592–2605

    Article  PubMed  CAS  Google Scholar 

  • Danuser G, Waterman-Storer CM (2006) Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:361–387

    Article  PubMed  CAS  Google Scholar 

  • Dixit R, Cyr R (2004) Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16:3274–3284

    Article  PubMed  CAS  Google Scholar 

  • Dixit R, Chang E, Cyr R (2006) Establishment of polarity during organization of the acentrosomal plant cortical microtubule array. Mol Biol Cell 17:1298–1305

    Article  PubMed  CAS  Google Scholar 

  • Dyachok J, Shao MR, Vaughn K, Bowling A, Facette M, Djakovic S, Clark L, Smith L (2008) Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. Mol Plant 1:990–1006

    Article  PubMed  CAS  Google Scholar 

  • Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR 3rd, Maiato H, Khodjakov A, Akhmanova A, Kaverina I (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12:917–930

    Article  PubMed  CAS  Google Scholar 

  • Eren EC, Dixit R, Gautam N (2010) A three-dimensional computer simulation model reveals the mechanisms for self-organization of plant cortical microtubules into oblique arrays. Mol Biol Cell 21:2674–2684

    Article  PubMed  CAS  Google Scholar 

  • Falconer M, Donaldson G, Seagull R (1988) MTOCs in higher plant cells: an immunofluorescent study of microtubule assembly sites following depolymerization by APM. Protoplasma 144:46–55

    Article  Google Scholar 

  • Fisher DD, Cyr RJ (1998) Extending the microtubule/microfibril paradigm—cellulose synthesis is required for normal cortical microtubule alignment in elongating cells. Plant Physiol 116:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Flanders DJ, Rawlins DJ, Shaw PJ, Lloyd CW (1989) Computer-aided 3-D reconstruction of interphase microtubules in epidermal-cells of Datura stramonium reveals principles of array assembly. Development 106:531–541

    Google Scholar 

  • Flanders DJ, Rawlins DJ, Shaw PJ, Lloyd CW (1990) Nucleus-associated microtubules help determine the division plane of plant epidermal cells: avoidance of four-way junctions and the role of cell geometry. J Cell Biol 110:1111–1122

    Article  PubMed  CAS  Google Scholar 

  • Foissner I, Menzel D, Wasteneys GO (2009) Microtubule-dependent motility and orientation of the cortical endoplasmic reticulum in elongating characean internodal cells. Cell Motil Cytoskeleton 66(3):142–155

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Gu Y, Zheng ZL, Wasteneys G, Yang ZB (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700

    Article  PubMed  CAS  Google Scholar 

  • Galatis B (1980) Microtubules and guard-cell morphogenesis in Zea mays L. J Cell Sci 45:211–244

    PubMed  CAS  Google Scholar 

  • Galatis B, Apostolakos P, Katsaros C (1983) Microtubules and their organizing centers in differentiating guard-cells of Adiantum capillus veneris. Protoplasma 115:176–192

    Article  Google Scholar 

  • Galway ME, Hardham AR (1986) Microtubule reorganization, cell wall synthesis and establishment of the axis of elongation in regenerating protoplasts of the alga Mougeotia. Protoplasma 135:130–143

    Article  Google Scholar 

  • Gunning BS (1980) Spatial and temporal regulation of nucleating sites for arrays of cortical microtubules in root tip cells of the water fern Azolla pinnata. Eur J Cell Biol 23:53–65

    PubMed  CAS  Google Scholar 

  • Gunning BES, Hardham AR, Hughes JE (1978) Evidence for initiation of microtubules in discrete regions of cell cortex in Azolla root-tip cells, and an hypothesis on development of cortical arrays of microtubules. Planta 143:161–179

    Article  Google Scholar 

  • Kodani A, Sutterlin C (2009) A new function for an old organelle: microtubule nucleation at the Golgi apparatus. EMBO J 28:995–996

    Article  PubMed  CAS  Google Scholar 

  • Kong Z, Hotta T, Lee YR, Horio T, Liu B (2010) The {gamma}-tubulin complex protein GCP4 is required for organizing functional microtubule arrays in Arabidopsis thaliana. Plant Cell 22:191–204

    Article  PubMed  CAS  Google Scholar 

  • Korn RW (1980) The changing shape of plant cells: transformations during cell proliferation. Ann Bot 46:649–666

    Google Scholar 

  • Kotzer AM, Wasteneys GO (2006) Mechanisms behind the puzzle: microtubule-microfilament cross-talk in pavement cell formation. Can J Bot 84:594–603

    Article  CAS  Google Scholar 

  • Langhans M, Niemes S, Pimpl P, Robinson DG (2009) Oryzalin bodies: in addition to its anti-microtubule properties, the dinitroaniline herbicide oryzalin causes nodulation of the endoplasmic reticulum. Protoplasma 236:73–84

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Marc J, Joshi HC, Palevitz BA (1993) A gamma-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104(Pt 4):1217–1228

    PubMed  CAS  Google Scholar 

  • Lucas J, Shaw SL (2008) Cortical microtubule arrays in the Arabidopsis seedling. Curr Opin Plant Biol 11:94–98

    Article  PubMed  CAS  Google Scholar 

  • Marc J, Mineyuki Y, Palevitz BA (1989a) The generation and consolidation of a radial array of cortical microtubules in developing guard-cells of Allium cepa L. Planta 179:516–529

    Article  Google Scholar 

  • Marc J, Mineyuki Y, Palevitz BA (1989b) A planar microtubule-organizing zone in guard cells of Allium: experimental depolymerization and reassembly of microtubules. Planta 179:530–540

    Article  Google Scholar 

  • Matov A, Applegate K, Kumar P, Thoma C, Krek W, Danuser G, Wittmann T (2010) Analysis of microtubule dynamic instability using a plus-end growth marker. Nat Methods 7:761–768

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nat Cell Biol 7:961–968

    Article  PubMed  CAS  Google Scholar 

  • Panteris E, Galatis B (2005) The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments. New Phytol 167:721–732

    Article  PubMed  CAS  Google Scholar 

  • Panteris E, Galatis B, Apostolakos P (1991) Patterns of cortical and perinuclear microtubule organization in meristematic root-cells of Adiantum capillus veneris. Protoplasma 165:173–188

    Article  Google Scholar 

  • Pastuglia M, Bouchez D (2007) Molecular encounters at microtubule ends in the plant cell cortex. Curr Opin Plant Biol 10:557–563

    Article  PubMed  CAS  Google Scholar 

  • Perrin RM, Wang Y, Yuen CY, Will J, Masson PH (2007) WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana. Plant J 49:961–971

    Article  PubMed  CAS  Google Scholar 

  • Qian PP, Hou SW, Guo GQ (2009) Molecular mechanisms controlling pavement cell shape in Arabidopsis leaves. Plant Cell Rep 28:1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Rivero S, Cardenas J, Bornens M, Rios RM (2009) Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J 28:1016–1028

    Article  PubMed  CAS  Google Scholar 

  • Sainsbury F, Collings DA, Mackun K, Gardiner J, Harper JDI, Marc J (2008) Developmental reorientation of transverse cortical microtubules to longitudinal directions: a role for actomyosin-based streaming and partial microtubule-membrane detachment. Plant J 56:116–131

    Article  PubMed  CAS  Google Scholar 

  • Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300:1715–1718

    Article  PubMed  CAS  Google Scholar 

  • Stoppin V, Vantard M, Schmit AC, Lambert AM (1994) Isolated plant nuclei nucleate microtubule assembly—the nuclear surface in higher plants has centrosome-like activity. Plant Cell 6:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Tindemans SH, Hawkins RJ, Mulder BM (2010) Survival of the aligned: ordering of the plant cortical microtubule array. Phys Rev Lett 104:058103

    Article  PubMed  Google Scholar 

  • Vos JW, Dogterom M, Emons AMC (2004) Microtubules become more dynamic but not shorter during preprophase band formation: a possible “search-and-capture” mechanism for microtubule translocation. Cell Motil Cytoskeleton 57:246–258

    Article  PubMed  Google Scholar 

  • Wasteneys GO, Ambrose JC (2009) Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol 19:62–71

    Article  PubMed  CAS  Google Scholar 

  • Wasteneys GO, Collings DAC (2007) The cytoskeleton and co-ordination of directional expansion in a multicellular context. In: Verbelen JP, Vissenberg K (eds) The expanding cell. Springer-Verlag, Berlin, pp 217–248

    Chapter  Google Scholar 

  • Wasteneys GO, Williamson RE (1989) Reassembly of microtubules in Nitella tasmanica—assembly of cortical microtubules in branching clusters and its relevance to steady-state microtubule assembly. J Cell Sci 93:705–714

    Google Scholar 

  • Wasteneys GO, Jablonsky PP, Williamson RE (1989) Assembly of purified brain tubulin at cortical and endoplasmic sites in perfused internodal cells of the alga Nitella tasmanica. Cell Biol Int Rep 13:513–528

    Article  CAS  Google Scholar 

  • Wightman R, Turner SR (2007) Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays. Plant J 52:742–751

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Halsey LE, Szymanski DB (2011) The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells. BMC Plant Biol 11:27

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was obtained through NSERC Discovery grant 298264–2009 and CIHR Operating grant MOP-86675 to GOW and through the UBC Bioimaging Facility.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Ambrose.

Additional information

Handling Editor: Edwin Moore

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrose, C., Wasteneys, G.O. Nanoscale and geometric influences on the microtubule cytoskeleton in plants: thinking inside and outside the box. Protoplasma 249 (Suppl 1), 69–76 (2012). https://doi.org/10.1007/s00709-011-0334-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0334-x

Keywords

Navigation