Skip to main content

Advertisement

Log in

Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Arsenic (As) is a potential hazard to plants’ health, however the mechanisms of its toxicity are yet to be properly understood. To determine the impact of redox state and energetic in stress imposition, plants of Hydrilla verticillata (L.f.) Royle, which are known to be potential accumulator of As, were exposed to 100 and 500 μM arsenate (AsV) for 4 to 96 h. Plants demonstrated significant As accumulation with the maximum being at 500 μM after 96 h (568 μg g−1 dry weight, dw). The accumulation of As led to a significant increase in the level of reactive oxygen species, nitric oxide, carbonyl, malondialdehyde, and percentage of DNA degradation. In addition, the activity of pro-oxidant enzymes like NADPH oxidase and ascorbate oxidase also showed significant increases. These parameters collectively indicated oxidative stress, which in turn caused an increase in percentage of cell death. These negative effects were seemingly linked to an altered energetic and redox equilibrium [analyzed in terms of ATP/ADP, NADH/NAD, NADPH/NADP, reduced glutathione/oxidized glutathione, and ascorbate/dehydroascobate ratios]. Although there was significant increase in the levels of phytochelatins, the As chelating ligands, a large amount of As was presumably present as free ion particularly at 500 μM AsV, which supposedly produced toxic responses. In conclusion, the study demonstrated that the magnitude of disturbance to redox and energetic equilibrium of plants upon AsV exposure determines the extent of toxicity to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AO:

Ascorbate oxidase

ASC:

Reduced ascorbate

DHA:

Dehydroascorbate

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

NAD:

Nicotinamide adenine dinucleotide

NADH:

Nicotinamide adenine dinucleotide reduced

NADP:

Nicotinamide adenine dinucleotide phosphate

NADPH:

Nicotinamide adenine dinucleotide phosphate reduced

NO:

Nitric oxide

ROS:

Reactive oxygen species

References

  • Ahsan N, Lee D-G, Alam I, Kim PJ, Lee JJ, Ahn Y-O, Kwak S-S, Lee I-J, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee B-H (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during as stress. Proteomics 8:3561–3576

    Article  PubMed  CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Basiouny FM, Garrard LA (1984) Studies on mineral nutrition of Hydrilla verticillata. Weed Sci 32:681–685

    CAS  Google Scholar 

  • Cai L, Cherian MG (2003) Zinc-metallothionein protects from DNA damage induced by radiation better than glutathione and copper- or cadmium-metallothioneins. Toxicol Lett 136:193–198

    Article  PubMed  CAS  Google Scholar 

  • Caruso R, Campolo J, Dellanoce C, Mariele R, Parodi O, Accinni R (2004) Critical study of preanalytical and analytical phases of adenine and pyridine nucleotide assay in human whole blood. Anal Biochem 330:43–51

    Article  PubMed  CAS  Google Scholar 

  • Chaitanya KSK, Naithani SC (1994) Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn. f. New Phytol 26:623–627

    Article  Google Scholar 

  • Chivasa S, Ndimba BK, Simon WJ, Lindsey K, Slabas AR (2005) Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability. Plant Cell 17:3019–3034

    Article  PubMed  CAS  Google Scholar 

  • Dobrota C (2006) Energy dependent plant stress acclimation. Rev Environ Sci Biotechnol 5:243–251

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Ann Rev Plant Biol 60:455–484

    Article  CAS  Google Scholar 

  • Fridlyand LE, Backhausen JE, Holtgrefe S, Kitzmann C, Schiebe R (1997) Quantitative evaluation of the rate of 3-phosphoglycerate reduction in chloroplasts. Plant Cell Physiol 38:1177–1186

    CAS  Google Scholar 

  • Gillespie KM, Ainsworth EA (2007) Measurement of reduced, oxidized and total ascorbate content in plants. Nat Prot 2:871–874

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts 1. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–216

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stat Circ 347:1–32

    Google Scholar 

  • Hunt L, Holdsworth MJ, Gray JE (2007) Nicotinamidase activity is important for germination. Plant J 51:341–351

    Article  PubMed  CAS  Google Scholar 

  • Irtelli B, Navari-Izzo F (2008) Uptake kinetics of different arsenic species by Brassica carinata. Plant Soil 303:105–113

    Article  CAS  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen KA, Jensen PE, Moller IM, Schulz A (2009) Monitoring reactive oxygen species formation and localization in living cells by use of the fluorescent probe CM-H2-DCFDA and confocal laser microscopy. Physiol Plant 136:369–383

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Willians JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Meth Enzymol 233:346–363

    Article  PubMed  CAS  Google Scholar 

  • Minocha R, Thangavel P, Dhankher OP, Long S (2008) Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography. J Chromatogr A 1207:72–83

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Dwivedi S (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 86:205–215

    Article  PubMed  CAS  Google Scholar 

  • Mylona PV, Polidoros AN, Scandalios JG (1998) Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med 25:576–585

    Article  PubMed  CAS  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the critical roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Noctor G, Queval G, Gakiere B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620

    Article  PubMed  CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GH (2006) Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ Sci Technol 40:5010–5014

    Article  PubMed  CAS  Google Scholar 

  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579

    Article  PubMed  CAS  Google Scholar 

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic–phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122

    Article  PubMed  CAS  Google Scholar 

  • Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558

    Article  PubMed  CAS  Google Scholar 

  • Schaffer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  Google Scholar 

  • Schraudner M, Moeder W, Wiese C, Van Camp W, Inze D, Langebartels C, Sandermann H Jr (1998) Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J 16:235–245

    Article  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, D'Souza SF (2009) Increasing sulfur supply enhances tolerance to arsenic and its accumulation in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 43:6308–6313

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, D'Souza SF (2010) Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (L.f.) Royle. Ecotoxicol Environ Saf 73:1314–1322

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D'Souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60:3419–3431

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Pichersky E (2007) Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant J 49:1020–1029

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Ann Rev Plant Biol 54:669–689

    Article  CAS  Google Scholar 

  • Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel HJ, Overmyer K, Kangasjärvi J, Sandermann H, Langebartels C (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ 25:717–726

    Article  CAS  Google Scholar 

  • Yamamoto A, Bhuiyan NH, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penna Suprasanna.

Additional information

Handling Editor: Bhumi Nath Tripathi

Electronic supplementary materials

Additional supporting information may be found in the online version of this article:

ESM 1

(DOC 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, S., Suprasanna, P. & D’Souza, S.F. Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma 248, 805–815 (2011). https://doi.org/10.1007/s00709-010-0256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0256-z

Keywords

Navigation