Skip to main content
Log in

Pectin dynamic and distribution of exchangeable Ca2+ in Haemanthus albiflos hollow style during pollen–pistil interactions

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In this report, the localization and spatial distribution of two categories of pectin, high and low methylesterified, on the background of dynamic in loosely bound calcium (Ca2+) in Haemanthus hollow style were studied before and after pollination. In the style transmitting tract of unpollinated pistil, mainly high-methylesterified pectins were present, both in the transmitting tract epidermis and in the style canal. After pollination, an increase in the level of two investigated categories of pectin was observed, but the amount of high-methylesterified one in each period of time analyzed was permanently higher. Locally, in the regions of the style canal penetrated by pollen tubes, process of pectin de-esterification was initiated. However, pollination caused an increase of loosely bound Ca2+ level in the style transmitting tract, this process appears to be not linked with pectin de-esterification and possible Ca2+ release after the lysis of Ca2+ cross-linked de-esterified pectin. Instead, it seems to be based on Ca2+ exocytosis from the transmitting tract epidermis cells providing a source of Ca2+ for pollen tubes growing in Haemanthus hollow style.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

Ca2+ :

calcium

CRT:

calreticulin

ER:

endoplasmic reticulum

ecm:

extracellular matrix

HGs:

homogalactouronan

MAb JIM7:

monoclonal antibody against high-methylesterified homogalacturonic acid

MAb JIM5:

monoclonal antibody against low-methylesterified homogalacturonic acid

PBS:

phosphate-buffered saline

ppts:

Ca2+ precipitates

stt:

style transmitting tract

tte:

transmitting tract epidermis

References

  • Bednarska E, Lenartowska M, Niekraś L (2005) Localization of pectins and Ca2+ ions in unpollinated and pollinated wet (Petunia hybrida Hort.) and dry (Haemanthus albiflos L.) stigma. Folia Histochem Cytobiol 43:249–259

    PubMed  CAS  Google Scholar 

  • Bonnin E, Le Goff A, Korner R, Vigouroux J, Roepstorff P, Thibault JF (2002) Hydrolysis of pectins with different degrees and pattern of methylation by the endopolygalacturonase of Fusarium moniliforme. Biochim Biophys Acta 1596:83–94

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Derksen J, Mariani C (2003) A functional study of stylar hydroxyproline-rich glycoproteins during pollen tube growth. Sex Plant Reprod 16:87–98

    Article  CAS  Google Scholar 

  • Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–3226

    Article  PubMed  CAS  Google Scholar 

  • Catoire L, Pierron M, Morvan C, du Penhoat CH, Goldberg R (1998) Investigation of the action patterns of pectinmethylesterase isoforms through kinetic analyses and NMR spectroscopy—implications in cell wall expansion. J Biol Chem 273:33150–33156

    Article  PubMed  CAS  Google Scholar 

  • Chae K, Zhang K, Zhang L, Morikis D, Kim ST, Mollet JC (2007) Two SCA (stigma/style cysteine-rich adhesin) isoforms show structural differences that correlate with their levels of in vitro pollen tube adhesion activity. J Biol Chem 282:33845–33858

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Wang H, Wu H (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    Article  PubMed  CAS  Google Scholar 

  • Coimbra S, Almeida J, Junqueira V, Costa ML, Pereira LG (2007) Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J Exp Bot 58:4027–4035

    Article  PubMed  CAS  Google Scholar 

  • Crawford BCW, Yanofsky MF (2008) The formation and function of the female reproductive tract in flowering plants. Curr Biol 18:972–978

    Article  Google Scholar 

  • de Graaf BHJ, Knuiman BA, Derksen J, Mariani C (2003) Characterisation and localization of the transmitting tissue-specific PELPIII proteins of Nicotiana tabacum. J Exp Bot 54:55–63

    Article  PubMed  Google Scholar 

  • de Graaf BHJ, Knuiman BA, van der Weerden GM, Feron R, Derksen J, Mariani C (2005) The PELPIII glycoproteins in Solanaceae: stylar expression and transfer into pollen tube walls. Sex Plant Reprod 16:245–252

    Article  Google Scholar 

  • Dearnaley JDW, Daggard GA (2001) Expression of polygalacturonase enzyme in germinating pollen of Brassica napus. Sex Plant Reprod 13:265–271

    Article  CAS  Google Scholar 

  • Erbar C (2003) Pollen tube transmitting tissue: place of competition of male gametophytes. Int J Plant Sci 164:265–277

    Article  Google Scholar 

  • Ge LL, Tian HQ, Russel SD (2007) Calcium function and distribution during fertilization in angiosperms. Am J Bot 94:1046–1060

    Article  PubMed  CAS  Google Scholar 

  • Ge LL, Xie CT, Tian HQ, Russell SD (2009) Distribution of calcium in the stigma and style of tobacco during pollen germination and tube elongation. Sex Plant Reprod 22:87–96

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama T (2010) Peptide signaling in pollen–pistil interactions. Plant Cell Physiol 51:177–189

    Article  PubMed  CAS  Google Scholar 

  • Hristova K, Lam M, Feild T, Sage TL (2005) Transmitting tissue ECM distribution and compozition, and pollen geminability in Sarcandra glabra and Chloranthus japonicus (Chloranthaceae). Ann Bot 96:779–791

    Article  PubMed  CAS  Google Scholar 

  • Jia XY, He LH, Jing RL, Li RZ (2009) Calreticulin: conserved protein and diverse functions in plants. Physiol Plant 136:127–138

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  PubMed  CAS  Google Scholar 

  • Jouh GY, Lord EM (1996) Localization of pectins and arabinogalactan-protein in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination. Planta 199:251–261

    Google Scholar 

  • Khosravi D, Joulaire R, Shore JS (2003) Immunocytochemical distribution of polygalacturonase and pectins in styles of distilous and homostylous Turneraceae. Sex Plant Reprod 16:179–190

    Article  CAS  Google Scholar 

  • Kim S, Dong J, Lord EM (2004) Pollen tube guidance: the role of adhesion and hemotropic molecules. Curr Top Dev Biol 61:61–79

    Article  PubMed  CAS  Google Scholar 

  • Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181:512–521

    Article  CAS  Google Scholar 

  • Lenartowska M, Bednarska E, Butowt R (1997) Ca2+ in the pistil of Petunia hybrida Hort. during growth of the pollen tube—cytochemical and radiographic studies. Acta Biol Cracov Ser Bot 39:79–89

    Google Scholar 

  • Lenartowska M, Lenartowski R, Smoliński DJ, Wróbel B, Niedojadło J, Jaworski K, Bednarska E (2009) Calreticulin expression and localization in plant cells during pollen–pistil interaction. Planta 231:67–77

    Article  PubMed  CAS  Google Scholar 

  • Lenartowska M, Rodriguez-Garcia MI, Bednarska E (2001) Immunocytochemical localization of esterified and unesterified pectins in unpollinated and pollinated styles of Petunia hybrida Hort. Planta 213:182–191

    Article  PubMed  CAS  Google Scholar 

  • Li YQ, Mareck A, Faleri C, Moscatelli A, Liu Q, Cresti M (2002) Detection and localization of pectin methylesterase isoforms in pollen tubes of Nicotiana tabacum L. Planta 214:734–740

    Article  PubMed  CAS  Google Scholar 

  • Lind JL, Bonig I, Clarke AE, Anderson MA (1996) A style-specific 120 kDa glycoprotein enters pollen tubes of Nicotiana alata in vivo. Sex Plant Repro 9:75–86

    Article  Google Scholar 

  • Márton ML, Dresselhaus T (2010) Female gametophyte-controlled pollen tube guidance. Biochem Soc Trans 38:627–630

    Article  PubMed  Google Scholar 

  • Michalak M, Groenedyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:651–666

    Article  PubMed  CAS  Google Scholar 

  • Mollet J-C, Park S-Y, Nothnagel EA, Lord EM (2000) A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Park S-Y, Lord EM (2003) Expresion studies of SCA in lily and confirmation of its role in pollen tube adhesion. Plant Mol Biol 51:183–189

    Article  PubMed  CAS  Google Scholar 

  • Röckel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis and reflects the distribution of esterified and de-esterified pectins. Plant J 53:133–143

    Article  PubMed  Google Scholar 

  • Sage TL, Hristova-Sarkovski K, Koehl V, Lyew J, Pontieri V, Bernhard P, Weston P, Bagha S, Chiu G (2009) Transmitting tissue architecture in basal-relicutal angiosperms: implications for transmitting tissue origins. Am J Bot 96:183–206

    Article  PubMed  Google Scholar 

  • Sterling JD, Quigley HF, Orellana A, Mohnen D (2001) The catalytic site of the pectin bisynthetic enzyme alpha-1,4-galacturonosyltransferase is located in the lumen of the Golgi. Plant Physiol 127:360–371

    Article  PubMed  CAS  Google Scholar 

  • Tamari F, Shore JS (2004) Distribution of style and pollen polygalacturonases among distylous and homostylous Turnera and Piriqueta spp. (Turneraceae). Heredity 92:380–385

    Article  PubMed  CAS  Google Scholar 

  • Tian GW, Chen MH, Zaltsman A, Citovsky V (2006) A pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Mouille G, Pelloux J (2009) Homogalacturonan methyl-esterification and plant development. Mol Plant 2:851–860

    Article  PubMed  CAS  Google Scholar 

  • Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen tube growth. Nature 392:818

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Yang H-Y, Lord EM (2004) Calcium levels increase in the lily stylar transmitting tract after pollination. Sex Plant Reprod 16:259–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. JP Knox, Centre for Plant Biochemistry and Biotechnology, University of Leeds, UK for JIM5 and JIM7 antibodies, and Michał Świdziński for technical assistance. This project was supported by the Ministry of Science and Higher Education, grants 3 P04C 051 23 and N303 023 32/1034.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Lenartowska.

Additional information

Handling Editor: Benedikt Kost

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenartowska, M., Krzesłowska, M. & Bednarska, E. Pectin dynamic and distribution of exchangeable Ca2+ in Haemanthus albiflos hollow style during pollen–pistil interactions. Protoplasma 248, 695–705 (2011). https://doi.org/10.1007/s00709-010-0231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0231-8

Keywords

Navigation