Skip to main content
Log in

Endocytosis in plant–microbe interactions

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Plants encounter throughout their life all kinds of microorganisms, such as bacteria, fungi, or oomycetes, with either friendly or unfriendly intentions. During evolution, plants have developed a wide range of defense mechanisms against attackers. In return, adapted microbes have developed strategies to overcome the plant lines of defense, some of these microbes engaging in mutualistic or parasitic endosymbioses. By sensing microbe presence and activating signaling cascades, the plasma membrane through its dynamics plays a crucial role in the ongoing molecular dialogue between plants and microbes. This review describes the contribution of endocytosis to different aspects of plant–microbe interactions, microbe recognition and development of a basal immune response, and colonization of plant cells by endosymbionts. The putative endocytic routes for the entry of microbe molecules or microbes themselves are explored with a special emphasis on clathrin-mediated endocytosis. Finally, we evaluate recent findings that suggest a link between the compartmentalization of plant plasma membrane into microdomains and endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AP-2:

Adaptor complex 2

BiFC:

Bimolecular fluorescence complementation

CCP:

Clathrin-coated pit

CCV:

Clathrin-coated vesicle

CW:

Cell wall

CME:

Clathrin-mediated endocytosis

DAMP:

Damage-associated molecular pattern

DIM:

Detergent-insoluble membrane

DRP:

Dynamin-like protein

EHM:

Extrahaustorial membrane

EH Eps:

(EGFR pathway substrate) 15 homolog

EIX:

Ethylene-induced xylanase

eLRR:

Extracellular leucine-rich repeat

EMA:

Extrahaustorial matrix

EPS:

Exopolysaccharide

FLS2:

FLAGELLIN-SENSING 2

GFP:

Green fluorescent protein

HR:

Hypersensitive response

IT:

Infection thread

LeEIX:

Lycopersicum esculentum EIX receptor

LPS:

Lipopolysaccharide

LRR-RLK:

Leucine-rich repeat receptor-like kinase

LRR-RLP:

Leucine-rich repeat receptor-like protein

MAMP:

Microbe-associated molecular pattern

Nod factor:

Nodulation factor

NtrbohD:

Nicotiana tabacum respiratory burst oxidase homolog D

OGA:

Oligogalacturonide

PAMP:

Pathogen-associated molecular pattern

PBM:

Peribacteroid membrane

PM:

Plasma membrane

PRR:

Pattern recognition receptor

PtdIns:

Phosphatidylinositol

RME:

Receptor-mediated endocytosis

ROS:

Reactive oxygen species

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

T3SS:

Type 3 secretion system

References

  • Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG (2003) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 160(3):321–328

    Article  CAS  PubMed  Google Scholar 

  • Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414

    Article  CAS  PubMed  Google Scholar 

  • Ali GS, Prasad KVSK, Day I, Reddy ASN (2007) Ligand-dependent reduction in the membrane mobility of FLAGELLIN SENSITIVE2, an Arabidopsis receptor-like kinase. Plant Cell Physiol 48(11):1601–1611

    Article  CAS  PubMed  Google Scholar 

  • Altenbach D, Robatzek S (2007) Pattern recognition receptors: from the cell surface to intracellular dynamics. Mol Plant-Microb Interact 20(9):1031–1039

    Article  CAS  Google Scholar 

  • An QL, Huckelhoven R, Kogel KH, Van Bel AJE (2006) Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 8(6):1009–1019

    Article  CAS  PubMed  Google Scholar 

  • Banbury DN, Oakley JD, Sessions RB, Banting G (2003) Tyrphostin A23 inhibits internalization of the transferrin receptor by perturbing the interaction between tyrosine motifs and the medium chain subunit of the AP-2 adaptor complex. J Biol Chem 278(14):12022–12028

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Avni A (2009a) EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2. Plant J 59(4):600–611

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Avni A (2009b) EHD2 inhibits signaling of leucine rich repeat receptor-like proteins. Plant Signal Behav 4(7):682–684

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Aharon M, Benjamin S, Rotblat B, Horowitz M, Avni A (2008) AtEHDs, novel Arabidopsis EH-domain-containing protein involved in endocytosis. Plant J 55:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G, Malnoë P, Broughton WJ, Staehelin C (2004) NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol 134(2):871–879

    Article  CAS  PubMed  Google Scholar 

  • Bassham DC, Blatt MR (2008) SNAREs: cogs and coordinators in signaling and development. Plant Physiol 147(4):1504–1515

    Article  CAS  PubMed  Google Scholar 

  • Battey NH, James NC, Greenland AJ, Brownlee C (1999) Exocytosis and endocytosis. Plant Cell 11:643–659

    Article  CAS  PubMed  Google Scholar 

  • Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci USA 102(8):3135–3140

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Hiller NL, Liolios K, Win J, Kanneganti TD, Young C, Kamoun S, Haldar K (2006) The malarial host-targeting signal is conserved in the Irish potato famine pathogen. PLoS Pathog 2(5):e50

    Article  PubMed  CAS  Google Scholar 

  • Birch PR, Boevink PC, Gilroy EM, Hein I, Pritchard L, Whisson SC (2008) Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. Curr Opin Plant Biol 11(4):373–379

    Article  CAS  PubMed  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Ann Rev Biochem 72:395–447

    Article  CAS  PubMed  Google Scholar 

  • Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137(1):104–116

    Article  CAS  PubMed  Google Scholar 

  • Bourque S, Binet M-N, Ponchet M, Pugin A, Lebrun-Garcia A (1999) Characterization of the cryptogein binding sites on plant plasma membranes. J Biol Chem 274(49):34699–34705

    Article  CAS  PubMed  Google Scholar 

  • Boursiac Y, Boudet J, Postaire O, Luu D-T, Tournaire-Roux C, Maurel C (2008) Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J 56:207–218

    Article  CAS  PubMed  Google Scholar 

  • Brewin NJ, Robertson JG, Wood EA, Wells B, Larkins AP, Galfre G, Butcher GW (1985) Monoclonal antibodies to antigens in the peribacteroid membrane from Rhizobium-induced root nodules of pea cross-react with plasma membranes and Golgi bodies. EMBO J 4(3):605–611

    CAS  PubMed  Google Scholar 

  • Brodsky FM (1988) Living with clathrin: its role in intracellular membrane traffic. Science 242(4884):1396–1402

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Ann Rev Cell Dev Biol 14:111–136

    Article  CAS  Google Scholar 

  • Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11(2):467–480

    CAS  PubMed  Google Scholar 

  • Campanoni P, Blatt MR (2007) Membrane trafficking and polar growth in root hairs and pollen tubes. J Exp Bot 58(1):65–74

    Article  CAS  PubMed  Google Scholar 

  • Capoen W, Goormachtig S, De Rycke R, Schroeyers K, Holsters M (2005) SrSymRK, a plant receptor essential for symbiosome formation. Proc Natl Acad Sci USA 102(29):10369–10374

    Article  CAS  PubMed  Google Scholar 

  • Carbone R, Fré S, Iannolo G, Belleudi F, Mancini P, Pelicci PG, Torrisi MR, Di Fiore PP (1997) eps15 and eps15R are essential components of the endocytic pathway. Cancer Res 57(24):5498–5504

    CAS  PubMed  Google Scholar 

  • Catalano CM, Lane WS, Sherrier DJ (2004) Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules. Electrophoresis 25(3):519–531

    Article  CAS  PubMed  Google Scholar 

  • Catanzariti AM, Dodds PN, Ellis JG (2007) Avirulence proteins from haustoria-forming pathogens. FEMS Microbiol Lett 269(2):181–188

    Article  CAS  PubMed  Google Scholar 

  • Chang M, Chou JC, Chen CP, Liu BR, Lee HJ (2007) Noncovalent protein transduction in plant cells by macropinocytosis. New Phytol 174(1):46–56

    Article  CAS  PubMed  Google Scholar 

  • Cheon CI, Lee NG, Siddique AB, Bal AK, Verma DP (1993) Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 12(11):4125–4135

    CAS  PubMed  Google Scholar 

  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18(2):465–476

    Article  CAS  PubMed  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    Article  CAS  PubMed  Google Scholar 

  • Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20(22):3084–3088

    Article  CAS  PubMed  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44

    Article  CAS  PubMed  Google Scholar 

  • Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320

    CAS  PubMed  Google Scholar 

  • D’Haeze W, Holsters M (2004) Surface polysaccharides enable bacteria to evade plant immunity. Trends Microbiol 12(12):555–561

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof Y-D, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17(6):520–527

    Article  CAS  PubMed  Google Scholar 

  • Dickstein R, Scheirer DC, Fowle WH, Ausubel FM (1991) Nodules elicited by Rhizobium meliloti heme mutants are arrested at an early stage of development. Mol Gen Genet 230(3):423–432

    Article  CAS  PubMed  Google Scholar 

  • Dixon RO (1967) Origin of membrane envelope surrounding bacteria and bacteroids and presence of glycogen in clover root nodules. Archiv Fur Mikrobiologie 56(2):156–166

    Article  CAS  Google Scholar 

  • Dodds PN, Lawrence GJ, Catanzariti AM, Ayliffe MA, Ellis JG (2004) The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 16(3):755–768

    Article  CAS  PubMed  Google Scholar 

  • Dou D, Kale SD, Wang X, Jiang RH, Bruce NA, Arredondo FD, Zhang X, Tyler BM (2008) RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20(7):1930–1947

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Fauvart M, Michiels J (2008) Rhizobial secreted proteins as determinants of host specificity in the Rhizobium–legume symbiosis. FEMS Microbiol Lett 285(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Fournier J, Timmers AC, Sieberer BJ, Jauneau A, Chabaud M, Barker DG (2008) Mechanism of infection thread elongation in root hairs of Medicago truncatula and dynamic interplay with associated rhizobial colonization. Plant Physiol 148(4):1985–1995

    Article  CAS  PubMed  Google Scholar 

  • Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ (2007) Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol 17(12):1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Fritz-Laylin LK, Krishnamurthy N, Tör M, Sjölander KV, Jones JD (2005) Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol 138(2):611–623

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara M, Hamada S, Hiratsuka M, Fukao Y, Kawasaki T, Shimamoto K (2009) Proteome analysis of detergent-resistant membranes (DRMs) associated with OsRac1-mediated innate immunity in rice. Plant Cell Physiol 50(7):1191–1200

    Article  CAS  PubMed  Google Scholar 

  • Furt F, König S, Bessoule JJ, Sargueil F, Zallot R, Stanislas T, Noirot E, Lherminier J, Simon-Plas F, Heilmann I, Mongrand S (2010) Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane. Plant Physiol 152(4):2173–2187

    Article  CAS  PubMed  Google Scholar 

  • Gall L, Stan RC, Kress A, Hertel B, Thiel G, Meckel T (2010) Fluorescent detection of fluid phase endocytosis allows for in vivo estimation of endocytic vesicle sizes in plant cells with sub-diffraction accuracy. Traffic 11(4):548–559

    Article  CAS  PubMed  Google Scholar 

  • Garin J, Diez R, Kieffer S, Dermine JF, Duclos S, Gagnon E, Sadoul R, Rondeau C, Desjardins M (2001) The phagosome proteome: insight into phagosome functions. J Cell Biol 152(1):165–180

    Article  CAS  PubMed  Google Scholar 

  • Geldner N, Jurgens G (2006) Endocytosis in signalling and development. Curr Opin Plant Biol 9:1–6

    Article  CAS  Google Scholar 

  • Geldner N, Robatzek S (2008) Plant receptors go endosomal: a moving view on signal transduction. Plant Physiol 147:1565–1574

    Article  CAS  PubMed  Google Scholar 

  • Geldner N, Hyman DL, Wang X, Schumacher K, Chory C (2007) Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev 21:1598–1602

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Bonfante P (2007) Check-in procedures for plant cell entry by biotrophic microbes. Mol Plant Microbe Interact 20(9):1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17(12):3489–3499

    Article  CAS  PubMed  Google Scholar 

  • Goedhart J, Hink MA, Visser AJ, Bisseling T, Gadella TWJ (2000) In vivo fluorescence correlation microscopy (FCM) reveals accumulation and immobilization of Nod factors in root hair cell walls. Plant J 21(1):109–119

    Article  CAS  PubMed  Google Scholar 

  • González-Gaitán M (2003) Signal dispersal and transduction through the endocytic pathway. Nat Rev Mol Cell Biol 4:213–224

    Article  PubMed  CAS  Google Scholar 

  • Gross A, Kapp D, Nielsen T, Niehaus K (2005) Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytol 165:215–226

    Article  CAS  PubMed  Google Scholar 

  • Grouffaud S, van West P, Avrova AO, Birch PR, Whisson SC (2008) Plasmodium falciparum and Hyaloperonospora parasitica effector translocation motifs are functional in Phytophthora infestans. Microbiology 154(12):3743–3751

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T et al (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398

    Article  CAS  PubMed  Google Scholar 

  • Haney CH, Long SR (2010) Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc Natl Acad Sci USA 107:478–483

    Article  CAS  PubMed  Google Scholar 

  • Harder DE (1978) Comparative ultrastructure of the haustoria in uredial and pycnial infections of Puccinia coronata avenae. Can J Bot 56:214–224

    Article  Google Scholar 

  • Haucke V (2005) Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans 33(6):1285–1289

    Article  CAS  PubMed  Google Scholar 

  • Heath MC, Valent B, Howard RJ, Chumley FG (1990) Interactions of two strains of Magnaporthe grisea with rice, goosegrass, and weeping lovegrass. Can J Bot 68:1627–1637

    Article  Google Scholar 

  • Holstein SEH (2002) Clathrin and plant endocytosis. Traffic 3:614–620

    Article  CAS  PubMed  Google Scholar 

  • Holton N, Caño-Delgado A, Harrison K, Montoya T, Chory J, Bishop GJ (2007) Tomato BRASSINOSTEROID INSENSITIVE1 is required for systemin-induced root elongation in Solanum pimpinellifolium but is not essential for wound signaling. Plant Cell 19(5):1709–1717

    Article  CAS  PubMed  Google Scholar 

  • Hommelgaard AM, Roepstorff K, Vilhardt F, Torgersen ML, Sandvig K, van Deurs B (2005) Caveolae: stable membrane domains with a potential for internalization. Traffic 6(9):720–724

    Article  CAS  PubMed  Google Scholar 

  • Horn MA, Heinstein PF, Low PS (1989) Receptor-mediated endocytosis in plant cells. Plant Cell 1:1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the SinorhizobiumMedicago model. Nat Rev Microbiol 5(8):619–633

    Article  CAS  PubMed  Google Scholar 

  • Jung EH, Jung HW, Lee SC, Han SW, Heu S, Hwang BK (2004) Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicum annuum. Biochim Biophys Acta 1676(3):211–222

    CAS  PubMed  Google Scholar 

  • Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 9(4):361–368

    Article  CAS  PubMed  Google Scholar 

  • Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19(2):706–724

    Article  CAS  PubMed  Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA 98(11):6511–6515

    Article  CAS  PubMed  Google Scholar 

  • Kemen E, Kemen AC, Rafiqi M, Hempel U, Mendgen K, Hahn M, Voegele RT (2005) Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant Microb Interact 18(11):1130–1139

    Article  CAS  Google Scholar 

  • Kierszniowska S, Seiwert B, Schulze WX (2009) Definition of Arabidopsis sterol-rich membrane microdomains by differential treatment with methy-β-cyclodextrin and quantitative proteomics. Mol Cell Proteomics 8(4):612–633

    Article  CAS  PubMed  Google Scholar 

  • Kirkham M, Parton RG (2005) Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Bioch Biophys Acta-Mol Cell Res 1745(3):273–286

    Article  CAS  Google Scholar 

  • Kobayashi H, Naciri-Graven Y, Broughton WJ, Perret X (2004) Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol 51:335–347

    Article  CAS  PubMed  Google Scholar 

  • Koh S, André A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44(3):516–529

    Article  CAS  PubMed  Google Scholar 

  • König S, Ischebeck T, Lerche J, Stenzel I, Heilmann I (2008) Salt-stress-induced association of phosphatidylinositol 4, 5-bisphosphate with clathrin-coated vesicles in plants. Biochem J 415:387–399

    Article  PubMed  Google Scholar 

  • Król J, Wielbo J, Mazur A, Kopcińska J, Lotocka B, Golinowski W, Skorupska A (1998) Molecular characterization of pssCDE genes of Rhizobium leguminosarum bv. trifolii strain TA1: pssD mutant is affected in exopolysaccharide synthesis and endocytosis of bacteria. Mol Plant Microb Interact 11(11):1142–1148

    Article  Google Scholar 

  • Lafont F, van der Goot FG (2005) Bacterial invasion via lipid rafts. Cell Microbiol 7(5):613–620

    Article  CAS  PubMed  Google Scholar 

  • Lajoie P, Nabi IR (2007) Regulation of raft-dependent endocytosis. J Cell Mol Med 11(4):644–653

    Article  CAS  PubMed  Google Scholar 

  • Lajoie P, Nabi IR (2010) Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol 282:135–163

    Article  PubMed  CAS  Google Scholar 

  • Lajoie P, Kojic LD, Nim S, Li L, Dennis JW, Nabi IR (2009) Caveolin-1 regulation of dynamin-dependent, raft-mediated endocytosis of cholera toxin-B sub-unit occurs independently of caveolae. J Cell Mol Med 13(9B):3218–3225

    Article  PubMed  Google Scholar 

  • Laloi M, Perret AM, Chatre L, Melser S, Cantrel C, Vaultier MN, Zachowski A, Bathany K, Schmitter JM, Vallet M, Lessire R, Hartmann MA, Moreau P (2007) Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 143(1):461–472

    Article  CAS  PubMed  Google Scholar 

  • Laude AJ, Prior IA (2004) Plasma membrane microdomains: organization, function and trafficking. Mol Membr Biol 21(3):193–205

    Article  CAS  PubMed  Google Scholar 

  • Leborgne-Castel N, Luu D-T (2009) Regulation of endocytosis by external stimuli in plant cells. Plant Biosystems 143(3):630–635

    Google Scholar 

  • Leborgne-Castel N, Lherminier J, Der C, Fromentin J, Houot V, Simon-Plas F (2008) The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with ROS production in BY-2 tobacco cells. Plant Physiol 146(3):1255–1266

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre B, Furt F, Hartmann MA, Michaelson LV, Carde JP, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule JJ, Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144(1):402–418

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre B, Timmers T, Mbengue M, Moreau S, Hervé C, Tóth K, Bittencourt-Silvestre J, Klaus D, Deslandes L, Godiard L, Murray JD, Udvardi MK, Raffaele S, Mongrand S, Cullimore J, Gamas P, Niebel A, Ott T (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci USA 107(5):2343–2348

    Article  CAS  PubMed  Google Scholar 

  • Lherminier J, Elmayan T, Fromentin J, Elaraqui KT, Vesa S, Morel J, Verrier JL, Cailleteau B, Blein JP, Simon-Plas F (2009) NADPH oxidase-mediated reactive oxygen species production: subcellular localization and reassessment of its role in plant defense. Mol Plant Microb Interact 22(7):868–881

    Article  CAS  Google Scholar 

  • Limpens E, Mirabella R, Fedorova E, Franken C, Franssen H, Bisseling T, Geurts R (2005) Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc Natl Acad Sci USA 102(29):10375–10380

    Article  CAS  PubMed  Google Scholar 

  • Limpens E, Ivanov S, van Esse W, Voets G, Fedorova E, Bisseling T (2009) Medicago N-2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. Plant Cell 21(9):2811–2828

    Article  CAS  PubMed  Google Scholar 

  • Lin AE, Guttman JA (2010) Hijacking the endocytic machinery by microbial pathogens. Protoplasma. doi:10.1007/s00709-010-0164-2

    PubMed  Google Scholar 

  • Marchetti M, Monier MN, Fradagrada A, Mitchell K, Baychelier F, Eid P, Johannes L, Lamaze C (2006) Stat-mediated signaling induced by type I and type II interferons (IFNs) is differentially controlled through lipid microdomain association and clathrin-dependent endocytosis of IFN receptors. Mol Biol Cell 17(7):2896–2909

    Article  CAS  PubMed  Google Scholar 

  • Marie C, Broughton WJ, Deakin WJ (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4(4):336–342

    Article  CAS  PubMed  Google Scholar 

  • Marie C, Deakin WJ, Ojanen-Reuhs T, Diallo E, Reuhs B, Broughton WJ, Perret X (2004) TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol Plant Microb Interact 17:958–966

    Article  CAS  Google Scholar 

  • Mathis R, Van Gijsegem F, De Rycke R, D’Haeze W, Van Maelsaeke E, Anthonio E, Van Montagu M, Holsters M, Vereecke D (2005) Lipopolysaccharides as a communication signal for progression of legume endosymbiosis. Proc Natl Acad Sci USA 102(7):2655–2660

    Article  CAS  PubMed  Google Scholar 

  • Mellor RB (1989) Bacteroids in the Rhizobium–legume symbiosis inhabit a plant internal lytic compartment—implication for other microbial endosymbioses. J Exp Bot 40(217):831–839

    Article  CAS  Google Scholar 

  • Mellor RB, Werner D (1987) Peribacteroid membrane biogenesis in mature legume root-nodules. Symbiosis 3(1):75–100

    CAS  Google Scholar 

  • Mendgen K, Welter K, Schefford F, Knauf-Beiter G (1991) High pressure freezing of rust infected plant leaves. In: Mendgen K, Leseman DE (eds) Electron microscopy of plant pathogens. Springer, Berlin, pp 31–42

    Google Scholar 

  • Mendgen K, Bachem U, Stark-Urnau M, Xu H (1995) Secretion and endocytosis at the interface of plants and fungi. Can J Bot 73:640–648

    Article  Google Scholar 

  • Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol 34:367–386

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Pühler A, Niehaus K (2001) The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. Planta 213(2):214–222

    Article  CAS  PubMed  Google Scholar 

  • Meyer D, Pajonk S, Micali C, O’Connell R, Schulze-Lefert P (2009) Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J 57(6):986–999

    Article  CAS  PubMed  Google Scholar 

  • Mims CW, Rodriguez-Lother C, Richardson EA (2002) Ultrastructure of the host-pathogen interface in daylily leaves infected by the rust fungus Puccinia hemerocallidis. Protoplasma 219(3–4):221–226

    Article  CAS  PubMed  Google Scholar 

  • Mims CW, Richardson EA, Holt BF, Dangl JL (2004) Ultrastructure of the host-pathogen interface in Arabidopsis thaliana leaves infected by the downy mildew Hyaloperonospora parasitica. Can J Bot 82:1001–1008

    Article  Google Scholar 

  • Mithöfer A, Müller B, Wanner G, Eichacker LA (2002) Identification of defence-related cell wall proteins in Phytophthora sojae-infected soybean roots by ESI-MS/MS. Mol Plant Pathol 3(3):163–166

    Article  PubMed  Google Scholar 

  • Mongrand S, Morel J, Laroche J, Claverol S, Carde J-P, Hartmann M-A, Bonneu M, Simon-Plas F, Lessire R, Bessoule J-J (2004) Lipid rafts in higher plant cells: purification and characterization of TX100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279(35):36277–36286

    Article  CAS  PubMed  Google Scholar 

  • Morel J, Fromentin J, Blein JP, Simon-Plas F, Elmayan T (2004) Rac regulation of NtrbohD, the oxidase responsible for the oxidative burst in elicited tobacco cell. Plant J 37(2):282–293

    Article  CAS  PubMed  Google Scholar 

  • Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bessoule J-J, Blein J-P, Simon-Plas F (2006) Proteomics of plant detergent-resistant membrane. Mol Cell Proteomics 5:1396–1411

    Article  CAS  PubMed  Google Scholar 

  • Morrison N, Verma DPS (1987) A block in the endocytosis of Rhizobium allows cellular differentiation in nodules but affects the expression of some peribacteroid membrane nodulins. Plant Mol Biol 9:185–196

    Article  CAS  Google Scholar 

  • Moscatelli A, Idilli AI (2009) Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. J Integr Plant Biol 51(8):727–739

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response: the centenary is upon us but how much do we know? J Exp Bot 59(3):501–520

    Article  CAS  PubMed  Google Scholar 

  • Murphy AS, Bandyopadhyay A, Holstein SE, Peer WA (2005) Endocytotic cycling of PM proteins. Annu Rev Plant Biol 56:221–251

    Article  CAS  PubMed  Google Scholar 

  • Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW (2009) Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci USA 106(42):17615–17622

    Article  CAS  PubMed  Google Scholar 

  • Nielsen E, Cheung AY, Ueda T (2008) The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol 147(4):1516–1526

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Zapater E, Soriano-Ortega E, Marcote MJ, Ortiz-Masia D, Aniento F (2006) Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A. Plant J 48:757–770

    Article  CAS  PubMed  Google Scholar 

  • Panter S, Thomson R, de Bruxelles G, Laver D, Trevaskis B, Udvardi M (2000) Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules. Mol Plant Microb Interact 13(3):325–333

    Article  CAS  Google Scholar 

  • Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3(4):320–328

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski K, Sirrenberg A (2003) Symbiosis between Frankia and actinorhizal plants: root nodules of non-legumes. Indian J Exp Biol 41(10):1165–1183

    CAS  PubMed  Google Scholar 

  • Peleg-Grossman S, Volpin H, Levine A (2007) Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species. J Exp Bot 58(7):1637–1649

    Article  CAS  PubMed  Google Scholar 

  • Pellock BJ, Cheng HP, Walker GC (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol b182(15):4310–4318

    Article  Google Scholar 

  • Perotto S, Vandenbosch KA, Butcher GW, Brewin NJ (1991) Molecular composition and development of a plant glycocalyx associated with the peribacteroid membrane of pea root-nodules. Development 112(3):763–773

    CAS  Google Scholar 

  • Perotto S, Donovan N, Drobak BK, Brewin NJ (1995) Differential expression of a glycosyl inositol phospholipid antigen on the peribacteroid membrane during pea nodule development. Mol Plant Microb Interact 8(4):560–568

    Article  CAS  Google Scholar 

  • Perrais D, Merrifield CJ (2005) Dynamics of endocytic vesicle creation. Dev Cell 9:581–592

    Article  CAS  PubMed  Google Scholar 

  • Peskan T, Westermann M, Oelmüller R (2000) Identification of low-density Triton X-100-insoluble plasma membrane microdomains in higher plants. Eur J Biochem 267:6989–6995

    Article  CAS  PubMed  Google Scholar 

  • Philip-Hollingsworth S, Dazzo FB, Hollingsworth RI (1997) Structural requirements of Rhizobium chitolipooligosaccharides for uptake and bioactivity in legume roots as revealed by synthetic analogs and fluorescent probes. J Lipid Res 38(6):1229–1241

    CAS  PubMed  Google Scholar 

  • Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667

    Article  CAS  PubMed  Google Scholar 

  • Puri C, Tosoni D, Comai R, Rabellino A, Segat D, Caneva F, Luzzi P, Di Fiore PP, Tacchetti C (2005) Relationships between EGFR signaling-competent and endocytosis-competent membrane microdomains. Mol Biol Cell 16(6):2704–2718

    Article  CAS  PubMed  Google Scholar 

  • Raffaele S, Bayer E, Lafarge D, Cluzet S, GR S, Boubekeur T, Leborgne-Castel N, Carde JP, Lherminier J, Noirot E, Satiat-Jeunemaître B, Laroche-Traineau J, Moreau P, Ott T, Maule AJ, Reymond P, Simon-Plas F, Farmer EE, Bessoule JJ, Mongrand S (2009) Remorin, a Solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. Plant Cell 21(5):1541–1555

    Article  CAS  PubMed  Google Scholar 

  • Ricci P, Bonnet P, Huet JC, Sallantin M, Beauvaiscante F, Bruneteau M, Billard V, Michel G, Pernollet JC (1989) Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem 183:555–563

    Article  CAS  PubMed  Google Scholar 

  • Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537–542

    Article  CAS  PubMed  Google Scholar 

  • Robertson JG, Lyttleton P (1982) Coated and smooth vesicles in the biogenesis of cell walls, plasma membranes, infection threads and peribacteroid membranes in root hairs and nodules of white clover. J Cell Science 58:63–78

    CAS  PubMed  Google Scholar 

  • Robertson JG, Warburton MP, Lyttleton P, Fordyce AM, Bullivant S (1978) Membranes in lupin root-nodules. 2. Preparation and properties of bacteroid membranes and bacteroid envelope inner membranes from developing lupin nodules. J Cell Science 30:151–174

    CAS  PubMed  Google Scholar 

  • Roche Y, Gerbeau-Pissot P, Buhot B, Thomas D, Bonneau L, Gresti J, Mongrand S, Perrier-Cornet JM, Simon-Plas F (2008) Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts. FASEB J 22(11):3980–3991

    Article  CAS  PubMed  Google Scholar 

  • Romanenko AS, Rifel AA, Salyaev RK (2002) Endocytosis of exopolysaccharides of the potato ring rot causal agent by host-plant cells. Dokl Biol Sci 386:451–453

    Article  CAS  PubMed  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615

    Article  CAS  PubMed  Google Scholar 

  • Roth LE, Stacey G (1989a) Bacterium release into host cells of nitrogen-fixing soybean nodules: the symbiosome membrane comes from three sources. Eur J Cell Biol 49(1):13–23

    CAS  PubMed  Google Scholar 

  • Roth LE, Stacey G (1989b) Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied with two Bradyrhizobium japonicum mutant strains. Eur J Cell Biol 49:24–32

    CAS  PubMed  Google Scholar 

  • Saalbach G, Erik P, Wienkoop S (2002) Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea (Pisum sativum) symbiosomes. Proteomics 2(3):325–337

    Article  CAS  PubMed  Google Scholar 

  • Salmond GP, Reeves PJ (1993) Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem Sci 18(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Salomon S, Robatzek S (2006) Induced endocytosis of the receptor kinase FLS2. Plant Signal Behav 1(6):293–295

    PubMed  Google Scholar 

  • Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    Article  CAS  PubMed  Google Scholar 

  • Shahollari B, Peskan-Berghofer T, Oelmuller R (2004) Receptor kinases with leucine-rich repeats are enriched in Triton X-100 insoluble plasma membrane microdomains from plants. Physiol Plant 122(4):397–403

    Article  CAS  Google Scholar 

  • Shahollari B, Varma A, Oelmuller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162(8):945–958

    Article  CAS  PubMed  Google Scholar 

  • Shahollari B, Vadassery J, Varma A, Oelmuller R (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J 50(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Simon-Plas F, Elmayan T, Blein J-P (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31(2):137–147

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Skorpil P, Saad MM, Boukli NM, Kobayashi H, Ares-Orpel F, Broughton WJ, Deakin WJ (2005) NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol Microbiol 57(5):1304–1317

    Article  CAS  PubMed  Google Scholar 

  • Stanislas T, Bouyssie D, Rossignol M, Vesa S, Fromentin J, Morel J, Pichereaux C, Monsarrat B, Simon-Plas F (2009) Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco. Mol Cell Proteomics 8(9):2186–2198

    Article  CAS  PubMed  Google Scholar 

  • Stark-Urnau M, Mendgen K (1995) Sequential deposition of plant glycoproteins and polysaccharides at the host-parasite interface of Uromyces vignae and Vigna sinensis. Evidence for endocytosis and secretion. Protoplasma 186:1–11

    Article  CAS  Google Scholar 

  • Stoddart A, Dykstra M, Brown BK, Song W, Pierce SK, Brodsky FM (2002) Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity 17:451–462

    Article  CAS  PubMed  Google Scholar 

  • Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9(8):639–649

    Article  CAS  PubMed  Google Scholar 

  • Tellström V, Usadel B, Thimm O, Stitt M, Küster H, Niehaus K (2007) The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiol 143(2):825–837

    Article  PubMed  CAS  Google Scholar 

  • Timmers AC, Auriac MC, de Billy F, Truchet G (1998) Nod factor internalization and microtubular cytoskeleton changes occur concomitantly during nodule differentiation in alfalfa. Dev Cell 125(3):339–349

    CAS  Google Scholar 

  • Timmers ACJ, Holsters M, Goormachtig S (2005) Endocytosis and endosymbiosis. In: Samaj J, Baluska F, Menzel D (eds) Plant endocytosis. Springer, Berlin, pp 245–266

    Chapter  Google Scholar 

  • Timmers AC, Vallotton P, Heym C, Menzel D (2007) Microtubule dynamics in root hairs of Medicago truncatula. Eur J Cell Biol 86(2):69–83

    Article  CAS  PubMed  Google Scholar 

  • Tornero P, Mayda E, Gómez MD, Cañas L, Conejero V, Vera P (1995) Characterization of LRP, a leucine-rich repeat (LRR) protein from tomato plants that is processed during pathogenesis. Plant J 10(2):315–330

    Article  Google Scholar 

  • Triantafilou M, Morath S, Mackie A, Hartung T, Triantafilou K (2004) Lateral diffusion of Toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane. J Cell Sci 117:4007–4014

    Article  CAS  PubMed  Google Scholar 

  • Tu JC (1975) Structural similarity of the membrane envelopes of rhizobial bacteroids and the host plasma membrane as revealed by freeze-fracturing. J Bacteriol 122(2):691–694

    CAS  PubMed  Google Scholar 

  • Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20(17):4730–4741

    Article  CAS  PubMed  Google Scholar 

  • Underhill DM, Ozinsky A (2002) Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol 14(1):103–110

    Article  CAS  PubMed  Google Scholar 

  • Veereshlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, Dickstein R (2004) nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. Plant Physiol 136(3):3692–3702

    Article  CAS  PubMed  Google Scholar 

  • Verma DP, Kazazian V, Zogbi V, Bal AK (1978) Isolation and characterization of the membrane envelope enclosing the bacteroids in soybean root nodules. J Cell Biol 78(3):919–936

    Article  CAS  PubMed  Google Scholar 

  • Vieira OV, Botelho RJ, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366:689–704

    CAS  PubMed  Google Scholar 

  • Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R (2010) Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 102(7):391–407

    Article  CAS  PubMed  Google Scholar 

  • Vincent JL, Brewin NJ (2000) Immunolocalization of a cysteine protease in vacuoles, vesicles, and symbiosomes of pea nodule cells. Plant Physiol 123(2):521–530

    Article  CAS  PubMed  Google Scholar 

  • Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PR (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450(7166):115–118

    Article  CAS  PubMed  Google Scholar 

  • Winzer T, Bairl A, Linder M, Linder D, Werner D, Muller P (1999) A novel 53-kDa nodulin of the symbiosome membrane of soybean nodules, controlled by Bradyrhizobium japonicum. Mol Plant Microb Interact 12(3):218–226

    Article  CAS  Google Scholar 

  • Xu H, Mendgen K (1994) Endocytosis of 1, 3-β-glucans by broad bean cells at the penetration site of cowpea rust fungus (haploid stage). Planta 195:282–290

    Article  CAS  Google Scholar 

  • Yang FJ, Cheng LL, Zhang L, Dai WJ, Liu Z, Yao N, Xie ZP, Staehelin C (2009) Y4lO of Rhizobium sp strain NGR234 is a symbiotic determinant required for symbiosome differentiation. J Bacteriol 191(3):735–746

    Article  CAS  PubMed  Google Scholar 

  • Yendrek CR, Lee YC, Morris V, Liang Y, Pislariu CI, Burkart G, Meckfessel MH et al (2010) A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. Plant J 62(1):100–112

    Article  CAS  PubMed  Google Scholar 

  • Yokota K, Fukai E, Madsen LH, Jurkiewicz A, Rueda P, Radutoiu S, Held M, Hossain MS, Szczyglowski K, Morieri G, Oldroyd GE, Downie JA, Nielsen MW, Rusek AM, Sato S, Tabata S, James EK, Oyaizu H, Sandal N, Stougaard J (2009) Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti. Plant Cell 21(1):267–284

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17(5):1467–1481

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Cheung MY, Zhang Q, Lei CL, Zhang SH, Sun SSM, Lam HM (2009) A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive-induced reaction protein 1 (OsHIR1). Plant Cell Environ 32(12):1804–1820

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12(4):414–420

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125(4):749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the lab for their helpful discussions. We would like to thank the “Association pour la Recherche sur les Nicotianées” and the “Conseil Régional de Bourgogne” for the financial support provided to Thibaud Adam.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Leborgne-Castel.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leborgne-Castel, N., Adam, T. & Bouhidel, K. Endocytosis in plant–microbe interactions. Protoplasma 247, 177–193 (2010). https://doi.org/10.1007/s00709-010-0195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0195-8

Keywords

Navigation