Skip to main content
Log in

NaCl effect on the distribution of wall ingrowth polymers and arabinogalactan proteins in type A transfer cells of Medicago sativa Gabès leaves

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

We studied the distribution of wall ingrowth (WI) polymers by probing thin sections of companion cells specialized as transfer cells in minor veins of Medicago sativa cv Gabès blade with affinity probes and antibodies specific to polysaccharides and glycoproteins. The wall polymers in the controls were similar in WIs and in the primary wall but differently distributed. The extent of labeling in these papillate WIs differed for JIM5 and JIM7 homogalacturonans but was in the same range for LM5 and LM6 rhamnogalacturonans and xyloglucans. These data show that WI enhancement probably requires arabinogalactan proteins (JIM8) mainly localized on the outer part of the primary wall and WIs. By comparison, NaCl-treated plants exhibited cell wall polysaccharide modifications indicating (1) an increase in unesterified homogalacturonans (JIM5), probably implicated in Na+ binding and/or polysaccharide network interaction for limiting turgor variations in mesophyll cells; (2) enhancement of the xyloglucan network with an accumulation of fucosylated xyloglucans (CCRC-M1) known to increase the capacity of cellulose binding; and (3) specific recognition of JIM8 arabinogalactan proteins that could participate in both wall enlargement and cohesion by increasing the number of molecular interactions with the other polymers. In conclusion, the cell wall polysaccharide distribution in enlarged WIs might (1) participate in wall resistance to sequestration of Na+, allowing a better control of hydric homeostasis in mesophyll cells to maintain metabolic activity in source leaves, and (2) maintain tolerance of M. sativa to NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Mab:

Monoclonal antibody

PW:

Primary wall

type A TC:

Companion cell transfer cell

WI:

Wall ingrowth

References

  • Amiard V, Mueh KE, Demmig-Adams B, Ebbert V, Turgeon R (2005) Anatomical and photosynthetic acclimation to the light environment in species with differing mechanisms of phloem loading. PNAS 102:12968–12973

    Article  PubMed  CAS  Google Scholar 

  • Amiard V, Demmig-Adams B, Mueh KE, Turgeon R, Combs AF, Adam WW III (2006) Role of light and jasmonic acid in regulating foliar phloem cell wall ingrowth development. New Phytol 173:722–731

    Article  CAS  Google Scholar 

  • BaluŠka F, Šamaj J, Wojtaszek VD, Menzel D (2003) Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491

    Article  PubMed  CAS  Google Scholar 

  • Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na(+) recirculation by the phloem is crucial for salt tolerance. EMBO J 229:2004–2014

    Article  Google Scholar 

  • Bouché-Pillon S, Fleurat-Lessard P, Fromont JC, Serrano R, Bonnemain JL (1994) Immunolocalization of the plasma membrane H+-ATPase in minor veins of Vicia faba in relation to phloem loading. Plant Physiol 105:691–697

    PubMed  Google Scholar 

  • Boughanmi N, Michonneau P, Verdus MC, Piton F, Ferjani E, Bizid E, Fleurat-Lessard P (2003) Structural changes induced by NaCl in companion transfer cells of Medicago sativa blades. Protoplasma 220:179–187

    Article  PubMed  CAS  Google Scholar 

  • Boughanmi N, Michonneau P, Daghfous D, Fleurat-Lessard P (2005) Adaptation of Medicago sativa cv Gabès to long-term NaCl stress. J Plant Nutr Soil Sci 168:262–268

    Article  CAS  Google Scholar 

  • Clausen MH, Willats WG, Knox JP (2003) Synthetic methyl hexagalacturonate hapten inhibitors of homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr Res 338:1797–1800

    Article  PubMed  CAS  Google Scholar 

  • Dahiya P, Brewin NJ (2000) Immunogold localization of callose and other cell wall components in pea nodule transfer cells. Protoplasma 214:210–218

    Article  Google Scholar 

  • De Witt G, Richards J, Mohnen D, Jones AM (1999) Comparative compositional analysis of walls with two different morphologies: archetypical versus transfer-cell like. Protoplasma 209:238–245

    Article  Google Scholar 

  • Douchiche O, Rihouey C, Schaumann A, Driouich A, Morvan C (2007) Cadmium induced alterations of structural features of pectins in flax hypocotyl. Planta 225:1301–1312

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1986) Ion relations of plants under drought and salinity. Aust J Plant Physiol 13:75–91

    Article  CAS  Google Scholar 

  • Gunning BES, Pate JS (1969) “Transfer cells” plant cells with wall ingrowths, specialised in relation to short distance transport of solutes—their occurrence, structure and development. Protoplasma 68:107–133

    Article  Google Scholar 

  • His I, Andeme-Onzighi C, Morvan C, Driouich A (2001) Microscopic studies on mature flax fibers embedded in LRW: immunogold localisation of cell wall matrix polysaccharides. J Histochem Cytochem 49:1525–1536

    PubMed  CAS  Google Scholar 

  • Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136:2457–2462

    Article  PubMed  CAS  Google Scholar 

  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1, 4)-beta-galactan. Plant Physiol 113:1405–1412

    PubMed  CAS  Google Scholar 

  • Kang JS, Frank J, Kang CH, Kajiura H, Vikram M, Ueda A, Kim S, Bahk JD, Triplett B, Fujiyama K, Lee SY, von Schaewen A, Koiwa H (2008) Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. PNAS 105(15):5933–5938, Erratum in PNAS 105 22:7893

    Article  PubMed  CAS  Google Scholar 

  • Kramer D, Yeo A, Gullasch J, Laüchli AR (1977) Transfer cells in roots of Phaseolus coccineus: ultrastructure and possible function in exclusion of sodium from the shoot. Ann Bot 41:1031–1040

    CAS  Google Scholar 

  • Lamport DTA, Kieliszewski MJ, Showalter AM (2006) Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. New Phytol 169:479–492

    Article  PubMed  CAS  Google Scholar 

  • Lenartowska M, Mellerowitcz EJ, Samardakiewicz S, Woźny A (2008) Pectinous cell wall thickenings formation—a response of moss protonema cells to lead. Environ Exp Bot 65:119–131

    Google Scholar 

  • Levy S, Maclachlan G, Staehelin LA (1997) Xyloglucan side chains modulate binding to cellulose during in vitro binding assays as predicted by conformational dynamics simulations. Plant J 11:373–386

    Article  PubMed  CAS  Google Scholar 

  • Lohaus G, Hussmann M, Pennewiss K, Schneider H, Zhu JJ, Sattelmacher B (2000) Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching. J Exp Bot 51:1721–1732

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Song W, Sage TL, DellaPenna D (2006) Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. Plant Cell 18:2710–2732

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158

    Article  PubMed  CAS  Google Scholar 

  • Marcus SE, Verhertbruggen Y, Hervé G, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WGT, Knox JP (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 8:60–72

    Article  PubMed  CAS  Google Scholar 

  • McCurdy DW, Patrick JW, Offler CE (2008) Wall ingrowth formation in transfer cells: novel examples of localized wall deposition in plant cells. Curr Opin Plant Biol 11:653–661

    Article  PubMed  CAS  Google Scholar 

  • Micheli F (2001) Pectin methyl esterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6(9):414–419

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Pennell RI, Janniche L, Kjellbom P, Scofield GN, Peart JM, Roberts K (1991) Developmental regulation of a plasma membrane arabinogalactan protein epitope in oilseed rape flowers. Plant Cell 3:1317–1326

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Netto AB, Pettolino F, Cruz-Silva CTA, Simas FF, Bacic A, Carneiro-Leão AMA, Iacomini M, Maurer JBB (2007) Cashew-nut tree exudate gum: identification of an arabinogalactan-protein as a constituent of the gum and use on the stimulation of somatic embryogenesis. Plant Sci 173:468–477

    Article  CAS  Google Scholar 

  • Popper ZA, Fry SC (2008) Xyloglucan-pectin linkages are formed intraprotoplasmically, contribute to wall assembly, and remain stable in the wall. Planta 227:781–794

    Article  PubMed  CAS  Google Scholar 

  • Puhlmann J, Bucheli E, Swain MJ, Dunning N, Albersheim R, Darvill AG, Hahn MG (1994) Generation of monoclonal antibodies against plant cell-wall polysaccharides 1: characterization of a monoclonal antibody to a terminal alpha-(l-2)-linked fucosyl-containing epitope. Plant Physiol 104:699–710

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC, Braam J, Fry SC, Nihitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Kim YS, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32

    Article  PubMed  CAS  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  PubMed  CAS  Google Scholar 

  • Sunarpi HT, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, Yamamoto-Yamane Y, Takabe T (2007) Salt stress enhances proline utilization in the apical region of barley roots. Biochem Biophys Res Commun 355:61–66

    Article  PubMed  CAS  Google Scholar 

  • Van Bel AJE (1996) Interaction between sieve element and companion cell and the consequence for photoassimilate distribution. Two structural hardware frames with associated physiological software packages in Dicotyledones. J Exp Bot 47:1129–1140

    CAS  Google Scholar 

  • Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyl transferase AtFUT1. PNAS 99:3340–3345

    Article  PubMed  CAS  Google Scholar 

  • Vaughn KC, Talbot MJ, Offler CE, Mc Curdy DW (2007) Wall ingrowths in epidermal transfer cells of Vicia faba cotyledons are modified primary walls marked by localized accumulations of arabinogalactan proteins. Plant Cell Physiol 48:159–168

    Article  PubMed  CAS  Google Scholar 

  • Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J 8:491–504

    Article  CAS  Google Scholar 

  • Wimmers LE, Turgeon R (1991) Transfer cells and solute uptake in minors veins of Pisum sativum leaves. Planta 186:2–12

    Article  CAS  Google Scholar 

  • Winter E (1982) Salt tolerance of Trifolium alexandrinum L III. Effects of salt on ultrastructure of phloem and xylem transfer cells in petioles and leaves. Aust J Plant Physiol 9:239–250

    Article  CAS  Google Scholar 

  • Yates EA, Willats WGT, Martin H, Knox JP (1996) Immuno-chemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot. Planta 198:452–459

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universities of Limoges, France (Faculté Sciences et Techniques, LCSN), Poitiers, France (FRE 3091 CNRS and Service Interdisciplinaire de Microscopie et d'Imagerie Scientifique), and Bizerte, Tunisia. The authors are grateful to V Ameteau, M Lallemand, and JM Perault for skillful technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Lhernould.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boughanmi, N., Thibault, F., Decou, R. et al. NaCl effect on the distribution of wall ingrowth polymers and arabinogalactan proteins in type A transfer cells of Medicago sativa Gabès leaves. Protoplasma 242, 69–80 (2010). https://doi.org/10.1007/s00709-010-0125-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0125-9

Keywords

Navigation