Skip to main content
Log in

Both actin and myosin inhibitors affect spindle architecture in PtK1 cells: does an actomyosin system contribute to mitotic spindle forces by regulating attachment and movements of chromosomes in mammalian cells?

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Immunocytochemical techniques are used to analyze the effects of both an actin and myosin inhibitor on spindle architecture in PtK1 cells to understand why both these inhibitors slow or block chromosome motion and detach chromosomes. Cytochalasin J, an actin inhibitor and a myosin inhibitor, 2, 3 butanedione 2-monoxime, have similar effects on changes in spindle organization. Using primary antibodies and stains, changes are studied in microtubule (MT), actin, myosin, and chromatin localization. Treatment of mitotic cells with both inhibitors results in detachment or misalignment of chromosomes from the spindle and a prominent buckling of MTs within the spindle, particularly evident in kinetochore fibers. Evidence is presented to suggest that an actomyosin system may help to regulate the initial and continued attachment of chromosomes to the mammalian spindle and could also influence spindle checkpoint(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BDM:

2,3 butanedione 2-monoximine

CJ:

cytochalasin J

kMTs:

kinetochore microtubules

MTs:

microtubules

nkMTs:

nonkinetochore microtubules

References

  • Armstrong L, Snyder JA (1993) Role of microtubule organization in centrosome migration and mitotic spindle formation in PtK1 cells. Protoplasma 173:133–143

    Article  Google Scholar 

  • Barak L, Nothnagel E, DeMarco EF, Webb WW (1981) Differential staining of actin in metaphase cells with 7-nitro-2-oxa-1, 3-diazole-phallacidin and fluorescent Dnase: is actin involved in chromosomal movement? Proc Natl Acad Sci USA 78:3034–3038

    Article  CAS  PubMed  Google Scholar 

  • Brown S (1999) Cooperation between microtubule- and actin-based motor proteins. Ann Rev Cell Dev Biol 15:63–80

    Article  CAS  Google Scholar 

  • Cleary A (1995) F-actin redistribution at the division site in living Tradescantia stomatal complexes revealed by microinjection of rhodamine phalloidin. Protoplasma 185:152–165

    Article  Google Scholar 

  • Czaban BB, Forer A (1992) Rhodamine-phalloidin stains components of the chromosomal spindle fibers of crane-fly spermatocytes and Haemanthus endosperm cells. Biochem Cell Biol 70:664–676

    Article  CAS  PubMed  Google Scholar 

  • Fabian L, Forer A (2005) Redundant mechanisms for anaphase chromosome movements: crane-fly spermatocyte spindles normally use actin filaments but also can function without them. Protoplasma 225:169–184

    Article  PubMed  Google Scholar 

  • Fabian L, Forer A (2007) Possible roles of actin and myosin during anaphase chromosome movements in locust spermatocytes. Protoplasma 231:201–213

    Article  PubMed  Google Scholar 

  • Forer A (1978) Chromosome movements during cell division: possible involvement of actin filaments. In: Health IB (ed) Nuclear division in the fungi. New York, Academic Press, pp 21–88

    Google Scholar 

  • Forer A (1982) Crane-fly spermatocytes and spermatids: a system for studying cytoskeletal components. In: Wilson L (ed) The cytoskeleton, part B: biological systems and in vitro models. New York, Academic Press, pp 227–250

    Google Scholar 

  • Forer A (1985) Does actin produce the force that moves chromosomes to the pole during anaphase? Can J Biochem Cell Biol 63:585–598

    CAS  PubMed  Google Scholar 

  • Forer A, Jackson WT (1976) Actin filaments in the endosperm of mitotic spindles in a higher plant cell Haemanthus katherinae Baker. Cytobiologie 12:199–214

    Google Scholar 

  • Forer A, Wilson PJ (1994) A model for chromosome motion during mitosis. Protoplasma 179:95–105

    Article  Google Scholar 

  • Forer A, Pickett-Heaps JD (1998) Cytochalasin D and latrunculin affect chromosome behavior during meiosis in crane-fly spermatocytes. Chromosome Res 6:533–549

    Article  CAS  PubMed  Google Scholar 

  • Forer A, Fabian L (2005) Does 2, 3 butanedione monoxime inhibit nonmuscle myosin? Protoplasma 225:1–4

    Article  CAS  PubMed  Google Scholar 

  • Forer A, Spurck T, Pickett-Heaps JD (2007) Actin and myosin inhibitors block elongation of kinetochore fiber stubs in metaphase crane-fly spermatocytes. Protoplasma 232:79–85

    Article  CAS  PubMed  Google Scholar 

  • Forer A, Pickett-Heaps JD, Spurck T (2008) What generates flux of tubulin in kinetochore microtubules? Protoplasma 232:137–141

    Article  PubMed  Google Scholar 

  • Fujiwara K, Pollard TD (1976) Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol 71:848–875

    Article  CAS  PubMed  Google Scholar 

  • Gadde S, Heald R (2004) Mechanisms and molecules of the mitotic spindle. Curr Biol 14:R797–R805

    Article  CAS  PubMed  Google Scholar 

  • Griffith LM, Pollard TD (1982) The interaction of actin filaments with microtubules and microtubule associated proteins. J Biol Chem 257:9143–9151

    CAS  PubMed  Google Scholar 

  • Hayden JH, Browser SS, Reider CL (1990) Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt cells. J Cell Biol 111:1039–1045

    Article  CAS  PubMed  Google Scholar 

  • Higuchi H, Takemori S (1989) Butanedione monoxime suppresses contraction and ATPase activity of rabbit skeletal muscle. J Biochem 105:638–643

    CAS  PubMed  Google Scholar 

  • Huxley AF (1955) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    Google Scholar 

  • LaFountain JR, Janicke MA, Balczon R, Rickards GK (1992) Cytochalasin induces abnormal anaphase in crane-fly spermatocytes and causes altered distribution of actin and centromeric antigens. Chromosoma 101:425–441

    Article  CAS  Google Scholar 

  • Lew DJ, Burke DJ (2003) The spindle assembly and spindle assembly checkpoints. Ann Rev Genet 37:251–282

    Article  CAS  PubMed  Google Scholar 

  • May KM, Hardwick KG (2006) The spindle checkpoint. J Cell Sci 119:4139–4142

    Article  CAS  PubMed  Google Scholar 

  • McIntosh R, Grishchuk EL, West RR (2002) Chromosome-microtubule interactions. Ann Rev Cell Dev Biol 18:193–219

    Article  CAS  Google Scholar 

  • Nicklas RB, Ward SC, Gorbsky GJ (1995) Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J Cell Biol 130:929–939

    Article  CAS  PubMed  Google Scholar 

  • O’Connell CB, Khodjakov AL (2007) Cooperative mechanisms of mitotic spindle formation. J Cell Sci 120:717–1722

    Google Scholar 

  • Pellegrin S, Mellor H (2007) Actin stress fibers. J Cell Sci 120:3491–3499

    Article  CAS  PubMed  Google Scholar 

  • Pickett-Heaps JD, Forer A (2009) Mitosis: Spindle evolution and the matrix model. Protoplasma 235:91–99

    Article  PubMed  Google Scholar 

  • Pickett-Heaps JD, Forer A, Spurck T (1996) Rethinking anaphase: where “PAC-MAN” fails and why a role for the spindle matrix is likely. Protoplasma 192:1–10

    Article  Google Scholar 

  • Pinsky BA, Biggins S (2005) The spindle checkpoint: tension versus attachment. Tends Cell Biol 15:486–491

    Article  CAS  Google Scholar 

  • Reider CL, Schultz A, Cole R, Sluder G (1994) Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol 127:1301–1310

    Article  Google Scholar 

  • Robinson RW, Snyder JA (2005) Localization of myosin II to chromosome arms and spindle fibers in PtK1 cells: a possible role for an actomyosin system in mitosis. Protoplasma 225:113–122

    Article  CAS  PubMed  Google Scholar 

  • Rogers GC, Rogers SL, Sharp DJ (2005) Spindle microtubules in flux. J Cell Sci 118:1105–1116

    Article  CAS  PubMed  Google Scholar 

  • Sampson K, Pickett-Heaps JD, Forer A (1996) Cytochalasin D blocks chromosomal attachment to the spindle in the green alga Oedogonium. Protoplasma 192:130–144

    Article  CAS  Google Scholar 

  • Schmidt AC, Lambert AM (1990) Microinjected fluorescent phalloidin in vivo reveals the F-actin dynamics and assembly in higher plant mitotic cells. Plant Cell 2:129–138

    Article  Google Scholar 

  • Scholey JM, Rogers GC, Sharp DJ (2001) Mitosis, microtubules and the matrix. J Cell Biol 15:216–266

    Google Scholar 

  • Scholey JM, Brust-Mascher I, Mogilner A (2003) Cell division. Nature 422:746–252

    Article  CAS  PubMed  Google Scholar 

  • Seagull RW, Falconer MM (1987) Microfilaments: dynamic arrays in higher plant cells. J Cell Biol 104:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Sharp DJ, Rogers GC, Scholey JM (2000) Microtubule motors in mitosis. Nature 407:41–47

    Article  CAS  PubMed  Google Scholar 

  • Silverman-Gavrila RV, Forer A (2000a) Evidence that actin and myosin are involved in the poleward flux of tubulin in metaphase kinetochore microtubules of crane-fly spermatocytes. Cell Motil Cytoskeleton 50:180–197

    Article  Google Scholar 

  • Silverman-Gavrila RV, Forer A (2000b) Chromosome attachment to the spindle in crane-fly spermatocytes requires actin and is necessary to initiate theanaphase-onset checkpoint. Protoplasma 212:56–71

    Article  Google Scholar 

  • Silverman-Gavrila RV, Forer A (2003) Myosin localization during meiosis I of crane-fly spermatocytes give indications about its role in division. Cell Motil Cytoskeleton 55:97–113

    Article  CAS  PubMed  Google Scholar 

  • Snyder JA, Cohen L (1996) Cytochalasin J affects chromosome congression and spindle microtubule organization in PtK1 cells. Cell Motil Cytoskeleton 32:245–257

    Article  Google Scholar 

  • Snyder JA, Olsofka C (2006) Both actin and mysosin inhibitors block or slow chromosome motion in mitotic PtK1 cells. Amer Soc Cell Biol. Abstract

  • Snyder JA, Golub RJ, Berg SP (1985) Role of non-kinetochore microtubules in spindle organization in mitotic PtK1 cells. Eur J Cell Biol 39:373–379

    Google Scholar 

  • Tominaga M, Yokota E, Sonobe S, Shimmen T (2000) Mechanism of inhibition of cytoplasmic streaming by a myosin inhibitor, 2, 3-butanedione monoxime. Protoplasma 213:46–54

    Article  CAS  Google Scholar 

  • Trass JA, Burgain S, de Vaulx DR (1987) The organization of the cytoskeleton during meiosis in eggplant (Solanum melongena L.): microtubules and F actin are both necessary for coordinated meiotic division. J Cell Sci 92:541–550

    Google Scholar 

  • Wadsworth P, Khodjakov A (2004) E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol 14:413–419

    Article  CAS  PubMed  Google Scholar 

  • Wollert T, Weiss DG, Gerdes H-H, Kuznetsov SA (2002) Activation of myosin-V-based motility and F-actin dependent network formation of endoplasmic reticulum during mitosis. J Cell Biol 25:571–577

    Article  Google Scholar 

  • Woolner S, O’Brien LL, Wiese C, Berment WM (2008) Myosin-10 and actin filaments are essential for mitotic spindle function. J Cell Biol 182:77–88

    Article  CAS  PubMed  Google Scholar 

  • Wrench G, Snyder JA (1997) Cytochalasin J treatment significantly alters mitotic spindle microtubule organization and kinetochore structure in PtK1 cells. Cell Motil Cytoskeleton 36:112–124

    Article  CAS  PubMed  Google Scholar 

  • Wrench G, Snyder JA (2001) The effect of cytochalasin J on kinetochore structure in PtK1 cells is mitotic cycle dependent. Cell Biol Int’l 25:815–220

    Article  CAS  Google Scholar 

  • Wu X, Kocher B, Wei Q, Hammer JA III (1998) Myosin Va associates with microtubule rich domains in both interphase and dividing cells. Cell Motil Cytoskeleton 40:286–303

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Forer A (2008) Jasplakinolide, an actin stabilizing agent, alters anaphase chromosome movements in crane-fly spermatocytes. Cell Motil Cytoskeleton 65:876–889

    Article  CAS  PubMed  Google Scholar 

  • Yahara I, Harada F, Sekita S, Yoshihira K, Natori S (1982) Correlation between the effects of 24 different cytochalasins on cellular structures and cellular events and those on actin in vitro. J Cell Biol 92:69–78

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Yao J, Joshi HC (2002) Attachment and tension in the spindle assembly checkpoint. J Cell Sci 115:3547–3555

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Barton L. Weller Endowment to JAS for support for this research and Laura Daddow for reviewing this manuscript.

Integrity of research and reporting

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith A. Snyder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, J.A., Ha, Y., Olsofka, C. et al. Both actin and myosin inhibitors affect spindle architecture in PtK1 cells: does an actomyosin system contribute to mitotic spindle forces by regulating attachment and movements of chromosomes in mammalian cells?. Protoplasma 240, 57–68 (2010). https://doi.org/10.1007/s00709-009-0089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-009-0089-9

Keywords

Navigation