Skip to main content
Log in

Role of vitronectin-like protein in Agrobacterium attachment and transformation of Arabidopsis cells

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The role of plant vitronectin-like protein (Vn) in Agrobacterium–host plant interactions and receptor-specific bacterial attachment is unclear and still open to debate. Using a well-established Agrobacterium-mediated Arabidopsis transformation system, the marker gene β-glucuronidase (GUS) of Escherichia coli, and biochemical and cytological methods, such as ELISA tests, immunoblots, immunolocalization, and functional in vitro binding assays, we have reassessed the role of Vn in receptor-specific bacterial attachment and transformation. We provide evidence that Vn is present in the host plant cells and anti-human vitronectin antibody cross-reacts with a 65-kDa protein from Arabidopsis cells. The specificity of the immunological cross-reactivity of anti-vitronectin antibodies was further demonstrated by ELISA competition experiments. Immunogold labeling showed that Vn is localized in the plant cell wall, and its level increased considerably after phytohormone treatment of the petiole explants. However, Agrobacterium attachment was unaffected, and no inhibition of petiole cell transformation was detected in the presence of human vitronectin and anti-vitronectin antibodies in the media. Additionally, no correlation between the occurrence of Vn, attachment of bacteria to the cells, and susceptibility to Agrobacterium-mediated transformation was observed. Taken together, our data do not support a functional role of plant Vn as the receptor for site-specific Agrobacterium attachment leading to the transformation of Arabidopsis cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ELISA:

Enzyme-linked immunosorbent assays

GUS:

β-glucuronidase

Vn:

Plant vitronectin-like protein

References

  • Akama K, Shiraishi H, Ohta S, Nakamura K, Okada K, Shimura Y (1992) Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes, and Agrobacterium strains. Plant Cell Rep 12:7–11

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chateau S, Sangwan RS, Sangwan-Norreel BS (2000) Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. J Exp Bot 51:1961–1968

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T (2007) Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9:9–20

    Article  PubMed  CAS  Google Scholar 

  • Clauce-Coupel H (2001) Etude de la compétence cellulaire à la transformation génétique via Agrobacterium tumefaciens chez Arabidopsis thaliana: caractérisation, importance relative, nécessité de l’acquisition de la compétence et implication de cette étude sur la compréhension du mécanisme de transformation. PhD thesis. Picardie Jules Verne University, Amiens

  • Dafny-Yelin M, Levy A, Tzfira T (2008) The ongoing saga of Agrobacterium-host interactions. Trends Plant Sci 13:102–105

    Article  PubMed  CAS  Google Scholar 

  • Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318:453–456

    Article  PubMed  CAS  Google Scholar 

  • Douglas CJ, Halperin W, Nester EW (1982) Agrobacterium tumefaciens mutants affected in attachment to plants cells. J Bacteriol 152:1265–1275

    PubMed  CAS  Google Scholar 

  • Ducrocq C, Sangwan RS, Sangwan-Norreel BS (1994) Production of Agrobacterium-mediated transgenic fertile plants by direct somatic embryogenesis from immature zygotic embryos of Datura innoxia. Plant Mol Biol 25:995–1009

    Article  PubMed  CAS  Google Scholar 

  • Ely KR, Kunicki TJ, Kodandapani R (1995) Common molecular scaffold for two unrelated RGD molecules. Protein Eng 8:823–827

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the gene-jockeying too. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed  CAS  Google Scholar 

  • Goldman RC, Capobianco JO, Doran CC, Matthysse AG (1992) Inhibition of lipopolysaccharide synthesis in Agrobacterium tumefaciens and Aeromonas salmonicida. J Gen Microbiol 138:1527–1533

    PubMed  CAS  Google Scholar 

  • Hayman EG, Pierschbacher MD, Suzuki S, Ruoslahti E (1985) Vitronectin—a major cell attachment-promoting protein in fetal bovine serum. Expt Cell Res 160:245–258

    Article  CAS  Google Scholar 

  • Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19:15–38

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimaeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Matthysse AG (1983) Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 154:906–915

    PubMed  CAS  Google Scholar 

  • Matthysse AG (1987) Characterization of non attaching mutants of Agrobacterium tumefaciens. J Bacteriol 169:313–323

    PubMed  CAS  Google Scholar 

  • Matthysse AG, Holmes KV, Gurlitz RHG (1981) Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol 145:583–595

    PubMed  CAS  Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mysore KS, Kumar CTR, Gelvin SB (2000) Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J 21:9–16

    Article  PubMed  CAS  Google Scholar 

  • Nam J, Mysore KS, Gelvin SB (1998) Agrobacterium tumefaciens transformation of the radiation hypersensitive Arabidopsis thaliana muatants uvh1 and rad5. Mol Plant Microbe Interact 11:1136–1141

    Article  PubMed  CAS  Google Scholar 

  • Neff NT, Binns AN (1985) Agrobacterium tumefaciens interactions with suspension-cultured tomato cells. Plant Physiol 77:35–42

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I (1990) Gene transfer to cereals: an assessment. Biotechnology 8:535–542

    Article  CAS  Google Scholar 

  • Rao SS, Lippincott BB, Lippincott JA (1982) Agrobacterium adherence involves the pectic portion of the host cell wall and is sensitive to the degree of pectin methylation. Physiol Plant 56:374–380

    Article  CAS  Google Scholar 

  • Sanders LC, Wang CS, Walling LL, Lord EM (1991) A homolog of the substrate adhesion molecule vitronectin occurs in four species of flowering plants. Plant Cell 3:629–635

    Article  PubMed  CAS  Google Scholar 

  • Sangwan RS, Bourgeois Y, Sangwan-Norreel BS (1991) Genetic transformation of Arabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation efficiency. Mol Gen Genet 230:475–485

    Article  PubMed  CAS  Google Scholar 

  • Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan-Norreel BS (1992) Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188:439–456

    Article  CAS  Google Scholar 

  • Schindler M, Meiners M, Cheresh DA (1989) RGD-dependent linkage between plant cell wall and plasma membrane: consequences for growth. J Cell Biol 108:1955–1965

    Article  PubMed  CAS  Google Scholar 

  • Smit G, Tubbing DMJ, Kijne JW, Lugtenberg BJJ (1991) Role of Ca2+ in the activity of rhicadhesin from Rhizobium leguminosarum biovar viciae, which mediates the first step in attachment of Rhizobiaceae cells to plant root hair tips. Arch Microbiol 155:278–283

    Article  CAS  Google Scholar 

  • Smit G, Swart S, Lugtenberg BJJ, Kijne JW (1992) Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol Microbiol 6:2897–2903

    Article  PubMed  CAS  Google Scholar 

  • Swart S, Logman TJJ, Smit G, Lugtenberg BJJ, Kijne JW (1994) Purification and partial characterization of a glycoprotein from pea (Pisum sativum) with receptor activity for rhicadhesin, an attachment protein of Rhizobiaceae. Plant Mol Biol 24:171–183

    Article  PubMed  CAS  Google Scholar 

  • Sykes LC, Matthysse AG (1986) Time required for tumor induction by Agrobacterium. Appl Environ Microbiol 52:597–598

    PubMed  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    PubMed  CAS  Google Scholar 

  • Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    Article  PubMed  CAS  Google Scholar 

  • Villemont E, Dubois F, Sangwan RS, Vasseur G, Bourgeois Y, Sangwan-Norreel BS (1997) Role of the host cell cycle in Agrobacterium-mediated genetic transformation of Petunia: evidence of S-phase control mechanism for T-DNA transfer. Planta 201:160–172

    Article  CAS  Google Scholar 

  • Wagner VT, Matthysse AG (1992) Involvement of a vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells. J Bacteriol 174:5999–6003

    PubMed  CAS  Google Scholar 

  • Wagner VT, Brian L, Quatrano R (1992) Role of a vitronectin-like molecule in embryo adhesion of the brown alga Fucus. Proc Natl Acad Sci USA 89:3644–3648

    Article  PubMed  CAS  Google Scholar 

  • Zambryski PC (1992) Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu Rev Plant Physiol Plant Mol Biol 43:465–490

    Article  CAS  Google Scholar 

  • Zhu JK, Damsz B, Kononwicz AK, Bressan RA, Hasegawa PM (1994) A higher plant extracellular vitronectin-like adhesion protein is related to the translational elongation factor-1α. Plant Cell 6:393–404

    Article  PubMed  CAS  Google Scholar 

  • Zupan JR, Muth TR, Draper O, Zambryski PC (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Zoulikha Zaraoui and Gérard Vasseur for technical assistance and plant maintenance. We also thank Professor. F. Guerineau and Dr. S. Millam for critically reading the manuscript. This work was supported by the French Ministry for Research and Higher Education (MENSER) and also by the Regional Government of Picardie, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajbir S. Sangwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clauce-Coupel, H., Chateau, S., Ducrocq, C. et al. Role of vitronectin-like protein in Agrobacterium attachment and transformation of Arabidopsis cells. Protoplasma 234, 65–75 (2008). https://doi.org/10.1007/s00709-008-0022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-008-0022-7

Keywords

Navigation