Skip to main content
Log in

Phosphorylation of H2AX histone as indirect evidence for double-stranded DNA breaks related to the exchange of nuclear proteins and chromatin remodeling in Chara vulgaris spermiogenesis

  • Short Communication
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Phosphorylation of H2AX histone results not only from DNA damage (caused by ionizing radiation, UV or chemical substances, e.g. hydroxyurea), but also regularly takes place during spermiogenesis, enabling correct chromatin remodeling. Immunocytochemical analysis using antibodies against H2AX histone phosphorylated at serine 139 indirectly revealed endogenous double-stranded DNA breaks in Chara vulgaris spermatids in mid-spermiogenesis (stages V, VI and VII), when protamine-type proteins appear in the nucleus. Fluorescent foci were not observed in early (stages I–IV) and late (VIII–X) spermiogenesis, after replacement of histones by protamine-type proteins was finished. A similar phenomenon exists in animals. Determination of the localization of fluorescent foci and the ultrastructure of nuclei led to the hypothesis that DNA breaks at stage V, when condensed chromatin adheres to the nuclear envelope. This is transformed into a net-like structure during stage VI, probably allowing chromosome repositioning to specific regions in the mature spermatozoid. However, at stages VI and VII, DNA breaks are necessary for transformation of the nucleosomal structure into a fibrillar and finally the extremely condensed status of sleeping genes at stage X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Balhorn R (1982) A model for the structure of chromatin in mammalian sperm. J Cell Biol 93:298–305

    Article  PubMed  CAS  Google Scholar 

  • Cabrero J, Palomino-Morales J, Camacho PM (2007) The DNA-repair Ku70 protein is located in the nucleus and tail of elongating spermatids in grasshoppers. Chromosome Res 15:1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Carrell DT, Emery BR, Hammoud S (2007) Altered protamine expression and diminished spermatogenesis: what is the link. Hum Reprod Update 13:313–327

    Article  PubMed  CAS  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio M, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927

    Article  PubMed  CAS  Google Scholar 

  • Černá A, López-Fernández C, Fernández JL, Moreno Díaz de la Espina S, de la Torre C, Gosálvez J (2008) Triplex configuration in the nick-free DNAs that constitute the chromosomal scaffolds in grasshopper spermatids. Chromosoma 117:15–24

    Article  PubMed  Google Scholar 

  • Dadoune J-P (2003) Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech 61:56–75

    Article  PubMed  CAS  Google Scholar 

  • Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001–1004

    Article  PubMed  CAS  Google Scholar 

  • Foster HA, Abeydeera LR, Griffin DK, Bridger JM (2005) Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118:1811–1820

    Article  PubMed  CAS  Google Scholar 

  • Joffe BI, Solovei IV, Macgregor HC (1998) Ordered arrangement and rearrangement of chromosomes during spermatogenesis in two species of planarians (Plathelminthes). Chromosoma 107:173–183

    Article  PubMed  CAS  Google Scholar 

  • Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434:583–589

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowska M (1996) Changes in ultrastructure of cytoplasm and nucleus during spermiogenesis in Chara vulgaris. Folia Histochem Cytobiol 34:41–56

    PubMed  CAS  Google Scholar 

  • Kwiatkowska M (2003) Plasmodesmal changes are related to different developmental stages of antheridia of Chara species. Protoplasma 222:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowska M, Popłońska K (2002) Further ultrastructural research of Chara vulgaris spermiogenesis: endoplasmic reticulum, structure of chromatin, 3H-lysine and 3H-arginine incorporation. Folia Histochem Cytobiol 40:85–97

    PubMed  CAS  Google Scholar 

  • Kwiatkowska M, Kaźmierczak A, Popłońska K (2002) Ultrastructural, autoradiographic and electrophoretic examinations of Chara tomentosa spermiogenesis. Acta Soc Bot Pol 71:201–209

    CAS  Google Scholar 

  • Laberge R-M, Boissonneault G (2005a) On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod 73:289–296

    Article  CAS  Google Scholar 

  • Laberge R-M, Boissonneault G (2005b) Chromatin remodeling in spermatids: a sensitive step for the genetic integrity. Arch Androl 51:1–9

    Article  Google Scholar 

  • Leduc F, Maquennehan V, Nkoma GB, Boissonneault G (2008) DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol Reprod 78:324–332

    Article  PubMed  CAS  Google Scholar 

  • Marcon L, Boissonneault G (2004) Transient DNA strand breaks during mouse and human spermiogenesis: new insights in stage specificity and link to chromatin remodeling. Biol Reprod 70:910–918

    Article  PubMed  CAS  Google Scholar 

  • Mayer W, Fundele R, Haaf T (2000) Spatial separation of parental genomes during mouse interspecific (Mus musculus   M. spretus) spermiogenesis. Chromosome Res 8:555–558

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Ficca ML, Scherthan H, Bürkle A, Meyer RG (2005) Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma 114:67–74

    Article  PubMed  CAS  Google Scholar 

  • Olszewska MJ, Godlewski M (1973) A cytochemical study of spermatogenesis in Chara vulgaris L. Folia Histochem Cytochem 11:9–20

    CAS  Google Scholar 

  • Pogany GC, Corzett M, Feston S, Balhorn R (1981) DNA and protein content of mouse sperm. Implications regarding sperm chromatin structure. Exp Cell Res 136:127–136

    Article  PubMed  CAS  Google Scholar 

  • Popłońska K (2002) Cytochemical studies on histone-type and protamine-type proteins during spermiogenesis in Chara vulgaris and Chara tomentosa. Folia Histochem Cytobiol 40:233–234

    PubMed  Google Scholar 

  • Popłońska K, Wojtczak A, Kwiatkowska M, Kaźmierczak A (2007) Cytochemical and immunocytochemical studies of the localization of histones and protamine-type proteins in spermatids of Chara vulgaris and Chara tomentosa. Folia Histochem Cytobiol 45:367–374

    PubMed  Google Scholar 

  • Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R (2007) Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci 120:1689–1700

    Article  PubMed  CAS  Google Scholar 

  • Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12:162–169

    Article  PubMed  CAS  Google Scholar 

  • Risley MS, Einheber S, Bumcrot DA (1986) Changes in DNA topology during spermatogenesis. Chromosoma 94:217–227

    Article  PubMed  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  PubMed  CAS  Google Scholar 

  • Rybaczek D, Maszewski J (2007a) Phosphorylation of H2AX histones in response to double-strand breaks and induction of premature chromatin condensation in hydroxyurea-treated root meristem cells of Raphanus sativus, Vicia faba, and Allium porum. Protoplasma 230:31–39

    Article  CAS  Google Scholar 

  • Rybaczek D, Maszewski J (2007b) Induction of foci of phosphorylated H2AX histones and premature chromosome condensation after DNA damage in Vicia faba root meristem. Biol Plant 51:443–450

    Article  CAS  Google Scholar 

  • Smart DL, Halicka D, Schmuck G, Traganos F, Darzynkiewicz Z, Williams GM (2008) Assessment of DNA double-strand breaks and γH2AX induced by the topoisomerase II poisons etoposide and mitoxantrone. Mutat Res 641:43–47

    PubMed  CAS  Google Scholar 

  • Song X, Gjoneska E, Ren Q, Taverna SD, Allis CD, Gorovsky MA (2007) Phosphorylation of the SQ H2A.X motif is required for proper meiosis and mitosis in Tetrahymena thermophila. Mol Cell Biol 27:2648–2660

    Article  PubMed  CAS  Google Scholar 

  • Steger K (1999) Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol 199:471–487

    Article  PubMed  CAS  Google Scholar 

  • Tadokoro Y, Yomogida K, Yagura Y, Yamada S, Okabe M, Nishimune Y (2003) Characterization of histone H2A.X expression in testis and specific labeling of germ cells at the commitment stage of meiosis with histone H2A.X promoter-enhanced green fluorescent protein transgene. Biol Reprod 69:1325–1329

    Article  PubMed  CAS  Google Scholar 

  • Ward WS (1994) The structure of the sleeping genome: implications of sperm DNA organization for somatic cells. J Cell Biochem 55:77–82

    Article  PubMed  CAS  Google Scholar 

  • Ward WS, Coffey DS (1991) DNA packing and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 44:569–574

    Article  PubMed  CAS  Google Scholar 

  • Wojtczak A, Kwiatkowska M (2008) Immunocytochemical and ultrastructural analyses of the function of ubiquitin–proteasome system during spermiogenesis with the use of the inhibitors of proteasome proteolytic activity in algae Chara vulgaris. Biol Reprod 78:577–585

    Article  PubMed  CAS  Google Scholar 

  • Zalenskaya IA, Zalensky AO (2004) Non-random positioning of chromosomes in human sperm nuclei. Chromosome Res 12:163–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant no. 505/390 from the University of Łódź.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wojtczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojtczak, A., Popłońska, K. & Kwiatkowska, M. Phosphorylation of H2AX histone as indirect evidence for double-stranded DNA breaks related to the exchange of nuclear proteins and chromatin remodeling in Chara vulgaris spermiogenesis. Protoplasma 233, 263–267 (2008). https://doi.org/10.1007/s00709-008-0010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-008-0010-y

Keywords

Navigation