Skip to main content
Log in

Assessment of second Piola–Kirchhoff and Cauchy stress tensors in finite rotation sandwich and laminated shells under non-conservative pressure loads

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the stress fields in nonlinear sandwich and laminated composite shells subjected to displacement-dependent loads are analyzed. To solve the problem, the geometrically exact (GeX) hybrid-mixed four-node solid-shell element is proposed. The term GeX means that the middle surface is described by analytical functions, i.e., the parametrization of the surface is known. The laminated solid-shell element formulation is based on the choice of an arbitrary number of sampling surfaces (SaS) parallel to the middle surface and located at the Chebyshev polynomial nodes within the layers, in order to introduce the displacements of these surfaces as unknown functions. The outer surfaces and interfaces are also included into a set of SaS. Due to analytical integration utilized to evaluate the tangent stiffness matrix, the developed GeX solid-shell element under non-conservative loading shows excellent performance in the case of coarse meshes and makes it possible to use only one load step in most of the considered benchmark problems. It is shown that the difference between the second Piola–Kirchhoff and Cauchy stress tensors in some non-conservative problems for sandwich and laminated shells undergoing arbitrarily large rotations can be significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Patel, H.P., Kennedy, R.H.: Nonlinear finite element analysis for composite structures of axisymmetric geometry and loading. Comput. Struct. 15, 79–84 (1982)

    Article  Google Scholar 

  2. Trinko, M.J.: Ply and rubber stresses and contact forces for a loaded radial tire. Tire Sci. Technol. 11, 20–38 (1984)

    Article  Google Scholar 

  3. Tielking, J.T.: A finite element tire model. Tire Sci. Technol. 11, 50–63 (1984)

    Article  Google Scholar 

  4. Rothert, H., Gall, R.: On the three-dimensional computation of steel-belted tires. Tire Sci. Technol. 14, 116–124 (1986)

    Article  Google Scholar 

  5. Tseng, N.T.: Finite element analysis of freely rotating tires. Tire Sci. Technol. 15, 134–158 (1987)

    Article  Google Scholar 

  6. Chang, J.P., Satyamurthy, K., Tseng, N.T.: An efficient approach to the three-dimensional finite element analysis of tires. Tire Sci. Technol. 16, 249–273 (1988)

    Article  Google Scholar 

  7. Faria, L.O., Bass, J.M., Oden, J.T., Becker, E.B.: A three-dimensional rolling contact model for a reinforced rubber tire. Tire Sci. Technol. 17, 217–233 (1989)

    Article  Google Scholar 

  8. Domscheit, A., Rothert, H., Winkelmann, T.: Refined methods for tire computation. Tire Sci. Technol. 17, 291–304 (1989)

    Article  Google Scholar 

  9. Faria, L.O., Oden, J.T., Yavary, B., Tworzydlo, W.W., Bass, J.M., Becker, E.B.: Tire modeling by finite elements. Tire Sci. Technol. 20, 33–56 (1992)

    Article  Google Scholar 

  10. Danielson, K.T., Noor, A.K., Green, J.S.: Computational strategies for tire modeling and analysis. Comput. Struct. 61, 673–693 (1996)

    Article  Google Scholar 

  11. Greer, J.M., Palazotto, A.N.: Application of a total Lagrangian corotational finite element scheme to inflation of a tire. Int. J. Solids Struct. 34, 3541–3570 (1997)

    Article  Google Scholar 

  12. Grigolyuk, E.I., Kulikov, G.M.: Axisymmetric deformation of anisotropic multilayered shells of revolution of intricate shapes. Mech. Compos. Mater. 17, 437–445 (1982)

    Article  Google Scholar 

  13. Grigolyuk, E.I., Kulikov, G.M.: Multilayered Reinforced Shells: Analysis of Pneumatic Tires. Mashinostroyenie, Moscow (1988)

    Google Scholar 

  14. Kim, K.O., Tanner, J.A., Noor, A.K., Robinson, M.P.: Computational methods for frictionless contact with application to space shuttle orbiter nose-gear tires. NASA TP-3073. NASA, Washington (1991)

  15. Noor, A.K., Tanner, J.A., Peters, J.M.: Reduced basis technique for evaluating sensitivity derivatives of the nonlinear response of the space shuttle orbiter nose-gear tire. Tire Sci. Technol. 21, 232–259 (1993)

    Article  Google Scholar 

  16. Tanner, J.A., Martinson, V.J., Robinson, M.P.: Static frictional contact of the space shuttle nose-gear tire. Tire Sci. Technol. 22, 242–272 (1994)

    Article  Google Scholar 

  17. Kulikov, G.M.: Computational models for multilayered composite shells with application to tires. Tire Sci. Technol. 24, 1–38 (1996)

    Article  Google Scholar 

  18. Kulikov, G.M., Plotnikova, S.V.: Calculation of composite structures subjected to follower loads by using a geometrically exact shell element. Mech. Compos. Mater. 45, 545–556 (2009)

    Article  Google Scholar 

  19. Kulikov, G.M., Plotnikova, S.V.: Contact interaction of composite shells, subjected to follower loads, with a rigid convex foundation. Mech. Compos. Mater. 46, 43–56 (2010)

    Article  Google Scholar 

  20. Pagani, A., Azzara, R., Wu, B., Carrera, E.: Effect of different geometrically nonlinear strain measures on the static nonlinear response of isotropic and composite shells with constant curvature. Int. J. Mech. Sci. 209, 106713 (2021)

    Article  Google Scholar 

  21. Pagani, A., Azzara, R., Carrera, E.: Geometrically nonlinear analysis and vibration of in-plane-loaded variable angle tow composite plates and shells. Acta Mech. 234, 85–108 (2023)

    Article  MathSciNet  Google Scholar 

  22. Kulikov, G.M., Plotnikova, S.V.: Finite rotation exact geometry solid-shell element for laminated composite structures through extended SaS formulation and 3D analytical integration. Int. J. Numer. Methods Eng. 119, 852–878 (2019)

    Article  MathSciNet  Google Scholar 

  23. Kulikov, G.M., Plotnikova, S.V.: Exact geometry SaS-based solid–shell element for coupled thermoelectroelastic analysis of smart structures with temperature-dependent material properties. Acta Mech. 234, 163–189 (2023)

    Article  MathSciNet  Google Scholar 

  24. Kulikov, G.M., Plotnikova, S.V.: Advanced formulation for laminated composite shells: 3D stress analysis and rigid-body motions. Compos. Struct. 95, 236–246 (2013)

    Article  Google Scholar 

  25. Pian, T.H.H.: State-of-the-art development of hybrid/mixed finite element method. Finite Elem. Anal. Design 21, 5–20 (1995)

    Article  MathSciNet  Google Scholar 

  26. Sze, K.Y., Chan, W.K., Pian, T.H.H.: An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells. Int. J. Numer. Methods Eng. 55, 853–878 (2002)

    Article  Google Scholar 

  27. Sansour, C., Kollmann, F.G.: Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput. Mech. 24, 435–447 (2000)

    Article  Google Scholar 

  28. Kulikov, G.M., Bohlooly, M., Plotnikova, S.V., Kouchakzadeh, M.A., Glebov, A.O.: Nonlinear displacement-based and hybrid-mixed quadrilaterals for three-dimensional stress analysis through sampling surfaces formulation. Thin-Walled Struct. 155, 106918 (2020)

    Article  Google Scholar 

  29. Yeom, C.H., Lee, S.W.: An assumed strain finite element model for large deflection composite shells. Int. J. Numer. Methods Eng. 28, 1749–1768 (1989)

    Article  Google Scholar 

  30. Park, H.C., Cho, C., Lee, S.W.: An efficient assumed strain element model with six dof per node for geometrically nonlinear shells. Int. J. Numer. Methods Eng. 38, 4101–4122 (1995)

    Article  Google Scholar 

  31. Kulikov, G.M., Plotnikova, S.V.: Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I. Timoshenko-Mindlin shell theory. Comput. Methods Appl. Mech. Eng. 192, 851–875 (2003)

    Article  Google Scholar 

  32. Klinkel, S., Gruttmann, F., Wagner, W.: A robust non-linear solid shell element based on a mixed variational formulation. Comput. Methods Appl. Mech. Eng. 195, 179–201 (2006)

    Article  Google Scholar 

  33. Pian, T.H.H., Sumihara, K.: Rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20, 685–1695 (1984)

    Article  Google Scholar 

  34. Lee, S.W., Pian, T.H.H.: Improvement of plate and shell finite elements by mixed formulations. AIAA J. 16, 9–34 (1978)

    Article  Google Scholar 

  35. Wempner, G., Talaslidis, D., Hwang, C.M.: A simple and efficient approximation of shells via finite quadrilateral elements. J. Appl. Mech. 49, 115–120 (1982)

    Article  Google Scholar 

  36. Kulikov, G.M., Plotnikova, S.V.: On the second Piola-Kirchhoff and Cauchy stress tensors in nonlinear shells subjected to displacement-dependent loads. Mech. Adv. Mater. Struct. (2023). https://doi.org/10.1080/15376494.2023.2180121

    Article  Google Scholar 

  37. Kulikov, G.M., Mamontov, A.A., Plotnikova, S.V., Mamontov, S.A.: Exact geometry solid-shell element based on a sampling surfaces technique for 3D stress analysis of doubly-curved composite shells. Curved Layered Struct. 3, 1–16 (2016)

    Google Scholar 

  38. Braun, M., Bischoff, M., Ramm, E.: Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates. Comp. Mech. 15, 1–18 (1994)

    Article  Google Scholar 

  39. Vu-Quoc, L., Tan, X.G.: Optimal solid shells for non-linear analyses of multilayer composites. I Statics. Comput. Methods Appl. Mech. Eng. 192, 975–1016 (2003)

    Article  Google Scholar 

  40. Parisch, H.: A continuum-based shell theory for non-linear applications. Int. J. Numer. Methods Eng. 38, 1855–1883 (1995)

    Article  Google Scholar 

  41. Basar, Y., Itskov, M., Eckstein, A.: Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements. Comput. Methods Appl. Mech. Eng. 185, 367–397 (2000)

    Article  Google Scholar 

  42. El-Abbasi, N., Meguid, S.A.: A new shell element accounting for through-thickness deformation. Comput. Methods Appl. Mech. Eng. 189, 41–862 (2000)

    Article  Google Scholar 

  43. Brank, B.: Nonlinear shell models with seven kinematic parameters. Comput. Methods Appl. Mech. Eng. 194, 336–2362 (2005)

    Article  Google Scholar 

  44. Kulikov, G.M., Plotnikova, S.V.: Hybrid-mixed ANS finite elements for stress analysis of laminated composite structures: Sampling surfaces plate formulation. Comput. Methods Appl. Mech. Eng. 303, 374–399 (2016)

    Article  MathSciNet  Google Scholar 

  45. Kulikov, G.M., Plotnikova, S.V.: Exact geometry four-node solid-shell element for stress analysis of functionally graded shell structures via advanced SaS formulation. Mech. Adv. Mater. Struct. 27, 948–964 (2020)

    Article  Google Scholar 

  46. Argyris, J.H., Symeonidis, S.: Nonlinear finite element analysis of elastic systems under nonconservative loading—natural formulation. Part I. Quasistatic problems. Comput. Methods Appl. Mech. Eng. 26, 75–123 (1981)

    Article  Google Scholar 

  47. Schweizerhof, K., Ramm, E.: Displacement dependent pressure loads in nonlinear finite element analyses. Comp. Struct. 18, 1099–1114 (1984)

    Article  Google Scholar 

  48. Boland, P.L., Pian, T.H.H.: Large deflection analysis of thin elastic structures by the assumed stress hybrid finite element method. Comp. Struct. 7, 1–12 (1977)

    Article  Google Scholar 

  49. Cho, C., Lee, S.W.: On the assumed strain formulation for geometrically nonlinear analysis. Finite Elem. Anal. Design 24, 31–47 (1996)

    Article  Google Scholar 

  50. Kulikov, G.M., Plotnikova, S.V.: Non-linear strain-displacement equations exactly representing large rigid-body motions. Part II. Enhanced finite element technique. Comput. Methods Appl. Mech. Eng. 195, 2209–2230 (2006)

    Article  Google Scholar 

  51. Washizu, K.: Variational Methods in Elasticity and Plasticity, 3rd edn. Pergamon Press, Oxford (1982)

    Google Scholar 

  52. Seide, P., Jamjoom, T.M.M.: Large deformations of circular rings under nonuniform normal pressure. J. Appl. Mech. 41, 192–196 (1974)

    Article  Google Scholar 

  53. Fafard, M., Dhatt, G., Batoz, J.L.: A new discrete Kirchhoff plate/shell element with updated procedures. Comput. Struct. 31, 591–606 (1989)

    Article  Google Scholar 

  54. Mohan, P., Kapania, R.K.: Updated Lagrangian formulation of a flat triangular element for thin laminated shells. AIAA J. 36, 273–281 (1998)

    Article  Google Scholar 

  55. Bohlooly, M., Kulikov, G.M., Plotnikova, S.V., Kouchakzadeh, M.A.: Three-dimensional stress analysis of structures in instability conditions using nonlinear displacement-based and hybrid-mixed quadrilaterals based on SaS formulation. Int. J. Non-Linear Mech. 126, 103540 (2020)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation under Grant No. 24-21-00120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Kulikov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The element stiffness matrix \({\mathbf{K}}_{{\text{F}}}\) of order \(12N_{{{\text{SaS}}}} \times 12N_{{{\text{SaS}}}}\), introduced in Sect. 6 to take into account non-conservative loading, can be written in a closed form. The use of Eqs. (39), (40), (48), (53) and (55) leads to the following matrix:

$${\mathbf{K}}_{{\text{F}}} = - \frac{{\partial {\mathbf{F}}}}{{\partial {\mathbf{q}}}}({}^{t}{\mathbf{P}}\, + {\Delta }{\mathbf{P}},\,{}^{t}{\mathbf{q}}\, + {\Delta }{\mathbf{q}}^{[n]} {\mathbf{)}}\,{,}$$
(A1)

whose columns with nonzero elements are

$$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\left( {{\mathbf{K}}_{{\text{F}}} } \right)_{{{\mathbf{.}}\,\,i + 3N_{{{\text{SaS}}}} (r - 1)}} = \frac{1}{{4\overline{A}_{1} \overline{A}_{2} }}\sum\limits_{s} {N_{rs} \left( {{}^{t}\hat{p}_{s}^{ - } + \Delta \hat{p}_{s}^{ - } } \right)} \frac{{\partial \eta_{is}^{ - } }}{{\partial {\mathbf{q}}}}\left( {{}^{t}{\mathbf{q}}\, + {\Delta }{\mathbf{q}}^{[n]} } \right)\,, \hfill \\ \left( {{\mathbf{K}}_{{\text{F}}} } \right)_{{{\mathbf{.}}\,\,i + 3(N_{{{\text{SaS}}}} - 1) + 3N_{{{\text{SaS}}}} (r - 1)}} = - \frac{1}{{4\overline{A}_{1} \overline{A}_{2} }}\sum\limits_{s} {N_{rs} \left( {{}^{t}\hat{p}_{s}^{ + } + \Delta \hat{p}_{s}^{ + } } \right)} \frac{{\partial \eta_{is}^{ + } }}{{\partial {\mathbf{q}}}}\left( {{}^{t}{\mathbf{q}}\, + {\Delta }{\mathbf{q}}^{[n]} } \right)\,, \hfill \\ \end{gathered}$$
(A2)

where

$$\frac{{\partial \eta_{1s}^{ \pm } }}{{\partial {\mathbf{q}}}}\left( {{}^{t}{\mathbf{q}}\, + {\Delta }{\mathbf{q}}^{[n]} } \right) = A_{1s} A_{2s} \left[ {\left( {{{\varvec{\Gamma}}}_{1s}^{ \pm } + ({{\varvec{\Gamma}}}_{1s}^{ \pm } )^{{\text{T}}} } \right)\,\left( {{}^{t}{\mathbf{q}}\, + {\Delta }{\mathbf{q}}^{[n]} } \right) - c_{2s}^{ \pm } {{\varvec{\Xi}}}_{31s}^{ \pm } } \right]\,,$$
$$\frac{{\partial \eta_{2s}^{ \pm } }}{{\partial {\mathbf{q}}}}\left( {{}^{t}{\mathbf{q}}\, + {\Delta }{\mathbf{q}}^{[n]} } \right) = A_{1s} A_{2s} \left[ {\left( {{{\varvec{\Gamma}}}_{2s}^{ \pm } + ({{\varvec{\Gamma}}}_{2s}^{ \pm } )^{{\text{T}}} } \right)\,\left( {{}^{t}{\mathbf{q}}\, + {\Delta }{\mathbf{q}}^{[n]} } \right) - c_{1s}^{ \pm } {{\varvec{\Xi}}}_{32s}^{ \pm } } \right]\,,$$
(A3)
$$\frac{{\partial \eta_{3s}^{ \pm } }}{{\partial {\mathbf{q}}}}\left( {{}^{t}{\mathbf{q}}\, + {\Delta }{\mathbf{q}}^{[n]} } \right) = A_{1s} A_{2s} \left[ {\left( {{{\varvec{\Gamma}}}_{3s}^{ \pm } + ({{\varvec{\Gamma}}}_{3s}^{ \pm } )^{{\text{T}}} } \right)\,\left( {{}^{t}{\mathbf{q}}\, + {\Delta }{\mathbf{q}}^{[n]} } \right) + c_{1s}^{ \pm } {{\varvec{\Xi}}}_{22s}^{ \pm } + c_{2s}^{ \pm } {{\varvec{\Xi}}}_{11s}^{ \pm } } \right]\,,$$

where \(A_{\alpha r}\) and \(\overline{A}_{\alpha }\) are the coefficients of the first fundamental form at the nodes and the center of the element, and, as we remember, the nodal indices \(r,\,s = 1,\,2,\,3,\,4\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, G.M., Plotnikova, S.V. & Mamontov, A.A. Assessment of second Piola–Kirchhoff and Cauchy stress tensors in finite rotation sandwich and laminated shells under non-conservative pressure loads. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03925-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03925-y

Navigation